-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstructural_similarity3d_loss_demo.py
94 lines (82 loc) · 2.99 KB
/
structural_similarity3d_loss_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# coding:utf-8
import os, sys, time
import chainer
import chainer.functions as F
import numpy as np
import cv2
import matplotlib.pyplot as plt
import SimpleITK as sitk
from chainer_ssim.structural_similarity3d_loss import structural_similarity3d_loss
class OptimizeBrain(chainer.Chain):
def __init__(self, img, window_size=11, size_average=True):
super(OptimizeBrain, self).__init__()
self.window_size = window_size
self.size_average = size_average
with self.init_scope():
self.img = chainer.Parameter(initializer=img)
def __call__(self, x):
return structural_similarity3d_loss(x, self.img, self.window_size, self.size_average)
def read_image(path, numpyFlag=True):
"""
This function use sitk
path : Meta data path
ex. /hogehoge.mhd
numpyFlag : Return numpyArray or sitkArray
return : numpyArray(numpyFlag=True)
Note ex.3D :numpyArray axis=[z,y,x], sitkArray axis=(z,y,x)
"""
img = sitk.ReadImage(path)
if not numpyFlag:
return img
nda = sitk.GetArrayFromImage(img) #(img(x,y,z)->numpyArray(z,y,x))
return nda
def min_max(x, axis=None):
min = x.min(axis=axis, keepdims=True)
max = x.max(axis=axis, keepdims=True)
result = (x-min)/(max-min)
return result
if __name__ == "__main__":
base_dir = os.path.dirname(os.path.abspath(__file__))
image_dir = "{}/image".format(base_dir)
print("----- Read image -----")
npImg1 = read_image("{}/brain.nii.gz".format(image_dir))
D, H, W = npImg1.shape
plt.figure()
plt.imshow(npImg1[D//2], cmap="gray")
plt.title("brain")
plt.show()
img1 = min_max(npImg1[None,None,...]).astype(np.float32)
img2 = np.random.rand(*img1.shape).astype(np.float32)
batchsize, ch, D, H, W = img2.shape
plt.imshow(img2[0,0,D//2,:,:], cmap="gray")
plt.title("random image")
plt.show()
print("----- Start optimization -----")
ssim_loss = OptimizeBrain(img=img2)
ssim_loss.to_gpu()
optimizer = chainer.optimizers.Adam()
optimizer.setup(ssim_loss)
xp = ssim_loss.xp
img1 = chainer.Variable(xp.array(img1, dtype=xp.float32))
ssim_value = 0.
iter = 0
while ssim_value < 0.95:
ssim_out = -ssim_loss(img1)
optimizer.target.cleargrads()
ssim_out.backward()
optimizer.update()
ssim_value = - chainer.backends.cuda.to_cpu(ssim_out.array)
if iter % 10 == 0:
print(ssim_value)
# plt.figure()
# plt.imshow(chainer.backends.cuda.to_cpu(F.squeeze(ssim_loss.img, axis=0).data).transpose(1,2,0))
# plt.text(10, 30, 'SSIM = {:.3f}'.format(ssim_value), fontsize=18, color="white")
# plt.title("random image")
# plt.show()
# print(ssim_value)
iter += 1
plt.figure()
plt.imshow(chainer.backends.cuda.to_cpu(ssim_loss.img.data[0,0,D//2,:,:]), cmap="gray")
plt.text(10, 30, 'SSIM = {:.3f}'.format(ssim_value), fontsize=18, color="white")
plt.title("random image")
plt.show()