forked from auspicious3000/contentvec
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path03_dump_hubert_feature.py
87 lines (75 loc) · 3.56 KB
/
03_dump_hubert_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import logging
import os
import sys
import numpy as np
import torch
import torch.nn.functional as F
import argparse
from tqdm import tqdm
import torch.multiprocessing as mp
from fairseq.data.audio.audio_utils import get_features_or_waveform
from fairseq.checkpoint_utils import load_model_ensemble_and_task
class HubertFeatureReader(object):
def __init__(self, ckpt_path, layer, max_chunk, device):
(model, cfg, task) = load_model_ensemble_and_task([ckpt_path])
self.model = model[0].eval().to(device)
self.task = task
self.layer = layer
self.max_chunk = max_chunk
self.device = device
def read_audio(self, path):
wav = get_features_or_waveform(path, need_waveform=True, use_sample_rate=self.task.cfg.sample_rate)
if wav.ndim == 2:
wav = wav.mean(-1)
assert wav.ndim == 1, wav.ndim
return wav
def get_feats(self, path):
x = self.read_audio(path)
with torch.no_grad():
x = torch.from_numpy(x).float().to(self.device)
if self.task.cfg.normalize:
x = F.layer_norm(x, x.shape)
x = x.view(1, -1)
feat = []
for start in range(0, x.size(1), self.max_chunk):
x_chunk = x[:, start : start + self.max_chunk]
feat_chunk, _ = self.model.extract_features(source=x_chunk, padding_mask=None, mask=False, output_layer=self.layer)
feat.append(feat_chunk)
return torch.cat(feat, 1).squeeze(0)
def process_chunk(rank, args, paths, feat_dir, split, device):
reader = HubertFeatureReader(args['ckpt_path'], args['layer'], args['max_chunk'], device)
os.makedirs(feat_dir, exist_ok=True)
for i, path in tqdm(enumerate(paths), total=len(paths), position=rank):
feat = reader.get_feats(path).cpu().numpy()
feat_path = f"{feat_dir}/{split}_{rank:02d}_{i:07d}.npy"
np.save(feat_path, feat)
def main(tsv_dir, split, ckpt_path, layer, feat_dir, max_chunk, num_process):
tsv_path = f"{tsv_dir}/{split}.tsv"
with open(tsv_path, "r", encoding='utf-8') as f:
root = f.readline().rstrip()
lines = [line.rstrip().split("\t")[0] for line in f]
paths = [f"{root}/{subpath}" for subpath in lines]
num_gpus = torch.cuda.device_count()
chunk_size = len(paths) // num_process
processes = []
for i in range(num_process):
start = i * chunk_size
end = (i + 1) * chunk_size if i < num_process - 1 else len(paths)
device = f"cuda:{i % num_gpus}"
process_args = (i, dict(ckpt_path=ckpt_path, layer=layer, max_chunk=max_chunk, num_process=num_process), paths[start:end], feat_dir, split, device)
p = mp.Process(target=process_chunk, args=process_args)
p.start()
processes.append(p)
for p in processes:
p.join()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--tsv_dir", type=str, default="data/00_filelist")
parser.add_argument("--ckpt_path", type=str, default="checkpoint_best_legacy_500.pt")
parser.add_argument("--layer", type=int, default=12)
parser.add_argument("--feat_dir", type=str, default="data/02_metadata_npy")
parser.add_argument("--max_chunk", type=int, default=1600000)
parser.add_argument("--num_process", type=int, default=5) # Number of processes
args = parser.parse_args()
main(args.tsv_dir, "valid", args.ckpt_path, args.layer, args.feat_dir, args.max_chunk, args.num_process)
main(args.tsv_dir, "train", args.ckpt_path, args.layer, args.feat_dir, args.max_chunk, args.num_process)