-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlinear_evaluate_depth.py
187 lines (158 loc) · 5.9 KB
/
linear_evaluate_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import copy
import logging
import os
import os.path as osp
import time
import mmcv
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.runner import init_dist
from mmcv.utils import Config, DictAction
from mmseg.apis import set_random_seed
from mmseg.utils import collect_env, get_root_logger
from utils.model_utils import build_2d_model
from linear_evaluate_fit3d import FiT3D
from evaluation.depth.apis import train_depther
from evaluation.depth.datasets import build_dataset
from evaluation.eval_utils.misc import create_depther
logger = logging.getLogger()
current_time = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
def parse_args():
parser = argparse.ArgumentParser(description="Linear Probing for Depth Estimation")
parser.add_argument("config", default="evaluation/configs/vitb_scannetpp_depth_linear_config.py", help="train config file path")
parser.add_argument("--work-dir", default="work_dirs/depth_eval/scannetpp/dinov2_small", help="the dir to save logs and models")
parser.add_argument("--resume-from", default='', help="the checkpoint file to resume from")
parser.add_argument(
"--backbone-type",
default="dinov2_small",
help="model type",
)
parser.add_argument("--eval_baseline", action="store_true", default=False)
parser.add_argument(
"--no-validate",
action="store_true",
help="whether not to evaluate the checkpoint during training",
)
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument(
"--gpus",
type=int,
help="number of gpus to use " "(only applicable to non-distributed training)",
)
group_gpus.add_argument(
"--gpu-ids",
type=int,
nargs="+",
help="ids of gpus to use " "(only applicable to non-distributed training)",
)
parser.add_argument("--seed", type=int, default=None, help="random seed")
parser.add_argument(
"--deterministic",
action="store_true",
help="whether to set deterministic options for CUDNN backend.",
)
parser.add_argument(
"--options", nargs="+", action=DictAction, help="custom options"
)
parser.add_argument(
"--launcher",
choices=["none", "pytorch", "slurm", "mpi"],
default="none",
help="job launcher",
)
parser.add_argument("--local-rank", type=int, default=0)
args = parser.parse_args()
if "LOCAL_RANK" not in os.environ:
os.environ["LOCAL_RANK"] = str(args.local_rank)
return args
def main(args):
cfg = Config.fromfile(args.config)
if args.options is not None:
cfg.merge_from_dict(args.options)
# set cudnn_benchmark
if cfg.get("cudnn_benchmark", False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get("work_dir", None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join(
"./work_dirs", osp.splitext(osp.basename(args.config))[0]
)
if args.resume_from is not None:
cfg.resume_from = args.resume_from
if args.gpu_ids is not None:
cfg.gpu_ids = args.gpu_ids
else:
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
# init distributed env first, since logger depends on the dist info.
if args.launcher == "none":
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
# cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
# init the logger before other steps
timestamp = time.strftime("%Y%m%d_%H%M%S", time.localtime())
log_file = osp.join(cfg.work_dir, f"{timestamp}.log")
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = "\n".join([f"{k}: {v}" for k, v in env_info_dict.items()])
dash_line = "-" * 60 + "\n"
logger.info("Environment info:\n" + dash_line + env_info + "\n" + dash_line)
meta["env_info"] = env_info
# log some basic info
logger.info(f"Distributed training: {distributed}")
logger.info(f"Config:\n{cfg}")
# set random seeds
if args.seed is not None:
logger.info(
f"Set random seed to {args.seed}, deterministic: " f"{args.deterministic}"
)
set_random_seed(args.seed, deterministic=args.deterministic)
cfg.seed = args.seed
meta["seed"] = args.seed
meta["exp_name"] = osp.basename(args.config)
device = torch.device("cuda")
if args.eval_baseline:
vit = build_2d_model(args.backbone_type)
vit = vit.to(device)
backbone_model = vit
else:
fit3d = FiT3D(args.backbone_type)
fit3d.eval()
fit3d.to(device)
backbone_model = fit3d
backbone_model.eval()
model = create_depther(cfg, backbone_model=backbone_model)
if cfg.get("SyncBN", False):
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
logger.info(model)
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset.pipeline = cfg.data.train.pipeline
datasets.append(build_dataset(val_dataset))
train_depther(
model,
datasets,
cfg,
distributed=distributed,
validate=(not args.no_validate),
timestamp=timestamp,
meta=meta,
)
if __name__ == "__main__":
args = parse_args()
main(args)