-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmean_weight.m
45 lines (39 loc) · 1.56 KB
/
mean_weight.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function mean_weight(iPart,iRep)
% Construct the mean weight matrix.
% 2016-5-28 17:10:08
% SLIC: a whole brain parcellation toolbox
% Copyright (C) 2016 Jing Wang
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
tic;
load parc_graymatter.mat;
load sInfo.mat;
load(sprintf('randset_%d.mat',iPart));
nM=num_gray;
sSub=sSub(randset(:,iRep));
nSub=length(sSub);
Wa=sparse(nM,nM); % averaged weight matrix
for iSub=1:nSub
cSub=sSub(iSub);
load(sprintf('sub_weight/sub%05d.mat',cSub));
W=W-diag(diag(W)); % clear the diagonals
Wa=(Wa*(iSub-1)+atanh(W))/iSub; % Fisher's Z-transformation
end
W=Wa;
W=tanh(W); % inverse Fisher's Z-transformation
% For empty rows, set the diagonal elements to be ones
[W,nEmpty]=parc_diag(W);
time=toc/3600;
save(sprintf('mean_weight/part%d_rep%d.mat',iPart,iRep),'W','nEmpty','time','-v7.3');
fprintf('Time to construct group mean weight matrix: %0.2f hours. \n',time);