-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_mol.py
205 lines (171 loc) · 8.44 KB
/
conv_mol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
from torch_geometric.nn import MessagePassing
import torch.nn.functional as F
from torch_geometric.nn import global_mean_pool, global_add_pool
from MolEncoders import AtomEncoder, BondEncoder
from torch_geometric.utils import degree
from torch_scatter import scatter_add
from torch_geometric.nn.inits import reset
import math
import pdb
class GINMolHeadEncoder(torch.nn.Module):
def __init__(self, num_layer, emb_dim):
super(GINMolHeadEncoder, self).__init__()
self.num_layer = num_layer
self.emb_dim = emb_dim
self.atom_encoder = AtomEncoder(emb_dim)
self.conv1 = GINEConv(emb_dim)
self.convs = nn.ModuleList([GINEConv(emb_dim) for _ in range(num_layer - 1)])
self.relu1 = nn.ReLU()
self.relus = nn.ModuleList(
[nn.ReLU() for _ in range(num_layer - 1)]
)
self.batch_norm1 = nn.BatchNorm1d(emb_dim)
self.batch_norms = nn.ModuleList([
nn.BatchNorm1d(emb_dim)
for _ in range(num_layer - 1)
])
self.dropout1 = nn.Dropout()
self.dropouts = nn.ModuleList([
nn.Dropout() for _ in range(num_layer - 1)
])
def forward(self, x, edge_index, edge_attr, batch):
x = self.atom_encoder(x)
post_conv = self.dropout1(self.relu1(self.batch_norm1(self.conv1(x, edge_index, edge_attr))))
for i, (conv, batch_norm, relu, dropout) in enumerate(
zip(self.convs, self.batch_norms, self.relus, self.dropouts)):
post_conv = batch_norm(conv(post_conv, edge_index, edge_attr))
if i < len(self.convs) - 1:
post_conv = relu(post_conv)
post_conv = dropout(post_conv)
return post_conv
class vGINMolHeadEncoder(torch.nn.Module):
def __init__(self, num_layer, emb_dim):
super(vGINMolHeadEncoder, self).__init__()
self.num_layer = num_layer
self.emb_dim = emb_dim
self.atom_encoder = AtomEncoder(emb_dim)
self.conv1 = GINEConv(emb_dim)
self.convs = nn.ModuleList([GINEConv(emb_dim) for _ in range(num_layer - 1)])
self.relu1 = nn.ReLU()
self.relus = nn.ModuleList(
[nn.ReLU() for _ in range(num_layer - 1)]
)
self.batch_norm1 = nn.BatchNorm1d(emb_dim)
self.batch_norms = nn.ModuleList([
nn.BatchNorm1d(emb_dim)
for _ in range(num_layer - 1)
])
self.dropout1 = nn.Dropout()
self.dropouts = nn.ModuleList([
nn.Dropout() for _ in range(num_layer - 1)
])
self.virtual_node_embedding = nn.Embedding(1, emb_dim)
self.virtual_mlp = nn.Sequential(*(
[nn.Linear(emb_dim, 2 * emb_dim),
nn.BatchNorm1d(2 * emb_dim), nn.ReLU()] +
[nn.Linear(2 * emb_dim, emb_dim),
nn.BatchNorm1d(emb_dim), nn.ReLU(),
nn.Dropout()]
))
self.virtual_pool = global_add_pool
def forward(self, x, edge_index, edge_attr, batch):
virtual_node_feat = self.virtual_node_embedding(torch.zeros(batch[-1].item() + 1).to(edge_index.dtype).to(edge_index.device))
x = self.atom_encoder(x)
post_conv = self.dropout1(self.relu1(self.batch_norm1(self.conv1(x, edge_index, edge_attr))))
for i, (conv, batch_norm, relu, dropout) in enumerate(
zip(self.convs, self.batch_norms, self.relus, self.dropouts)):
# --- Add global info ---
post_conv = post_conv + virtual_node_feat[batch]
post_conv = batch_norm(conv(post_conv, edge_index, edge_attr))
if i < len(self.convs) - 1:
post_conv = relu(post_conv)
post_conv = dropout(post_conv)
# --- update global info ---
if i < len(self.convs) - 1:
virtual_node_feat = self.virtual_mlp(self.virtual_pool(post_conv, batch) + virtual_node_feat)
# out_readout = self.readout(post_conv, batch)
return post_conv
class GraphMolMasker(torch.nn.Module):
def __init__(self, num_layer, emb_dim):
super(GraphMolMasker, self).__init__()
self.gnn_encoder = GINMolHeadEncoder(num_layer, emb_dim)
self.edge_att_mlp = nn.Linear(emb_dim * 2, 1)
self.node_att_mlp = nn.Linear(emb_dim, 1)
self.reset_parameters()
def reset_parameters(self):
reset(self.gnn_encoder)
reset(self.edge_att_mlp)
reset(self.node_att_mlp)
def forward(self, data):
x, edge_index, edge_attr, batch = data.x, data.edge_index, data.edge_attr, data.batch
node_rep = self.gnn_encoder(x, edge_index, edge_attr, batch)
size = batch[-1].item() + 1
row, col = edge_index
edge_rep = torch.cat([node_rep[row], node_rep[col]], dim=-1)
node_key = torch.sigmoid(self.node_att_mlp(node_rep))
edge_key = torch.sigmoid(self.edge_att_mlp(edge_rep))
node_key_num, node_env_num, non_zero_node_ratio = self.reg_mask(node_key, batch, size)
edge_key_num, edge_env_num, non_zero_edge_ratio = self.reg_mask(edge_key, batch[edge_index[0]], size)
self.non_zero_node_ratio = non_zero_node_ratio
self.non_zero_edge_ratio = non_zero_edge_ratio
output = {"node_key": node_key, "edge_key": edge_key,
"node_key_num": node_key_num, "node_env_num": node_env_num,
"edge_key_num": edge_key_num, "edge_env_num": edge_env_num}
return output
def reg_mask(self, mask, batch, size):
key_num = scatter_add(mask, batch, dim=0, dim_size=size)
env_num = scatter_add((1 - mask), batch, dim=0, dim_size=size)
non_zero_mask = scatter_add((mask > 0).to(torch.float32), batch, dim=0, dim_size=size)
all_mask = scatter_add(torch.ones_like(mask).to(torch.float32), batch, dim=0, dim_size=size)
non_zero_ratio = non_zero_mask / all_mask
return key_num + 1e-8, env_num + 1e-8, non_zero_ratio
class GNNMolTailEncoder(torch.nn.Module):
def __init__(self, num_layer, emb_dim):
super(GNNMolTailEncoder, self).__init__()
self.num_layer = num_layer
self.emb_dim = emb_dim
self.dropout_rate = 0.5
self.relu1 = nn.ReLU()
self.relus = nn.ModuleList([nn.ReLU() for _ in range(num_layer - 1)])
self.batch_norm1 = nn.BatchNorm1d(emb_dim)
self.batch_norms = nn.ModuleList([nn.BatchNorm1d(emb_dim) for _ in range(num_layer - 1)])
self.dropout1 = nn.Dropout(self.dropout_rate)
self.dropouts = nn.ModuleList([nn.Dropout(self.dropout_rate) for _ in range(num_layer - 1)])
self.conv1 = GINEConv(emb_dim)
self.convs = nn.ModuleList([GINEConv(emb_dim) for _ in range(num_layer - 1)])
def forward(self, x, edge_index, edge_attr, node_adv=None, edge_adv=None):
if node_adv is not None:
x = x * node_adv
post_conv = self.batch_norm1(self.conv1(x, edge_index, edge_attr, edge_adv))
if self.num_layer > 1:
post_conv = self.relu1(post_conv)
post_conv = self.dropout1(post_conv)
for i, (conv, batch_norm, relu, dropout) in enumerate(zip(self.convs, self.batch_norms, self.relus, self.dropouts)):
post_conv = batch_norm(conv(post_conv, edge_index, edge_attr, edge_adv))
if i != len(self.convs) - 1:
post_conv = relu(post_conv)
post_conv = dropout(post_conv)
return post_conv
class GINEConv(MessagePassing):
def __init__(self, emb_dim):
super(GINEConv, self).__init__(aggr = "add")
self.mlp = torch.nn.Sequential(torch.nn.Linear(emb_dim, 2*emb_dim),
torch.nn.BatchNorm1d(2*emb_dim),
torch.nn.ReLU(),
torch.nn.Linear(2*emb_dim, emb_dim))
self.eps = torch.nn.Parameter(torch.Tensor([0]))
self.bond_encoder = BondEncoder(emb_dim = emb_dim)
def forward(self, x, edge_index, edge_attr, edge_weight=None):
edge_embedding = self.bond_encoder(edge_attr)
out = self.mlp((1 + self.eps) *x + self.propagate(edge_index, x=x, edge_attr=edge_embedding, edge_weight=edge_weight))
return out
def message(self, x_j, edge_attr, edge_weight=None):
if edge_weight is not None:
mess = F.relu((x_j + edge_attr) * edge_weight)
else:
mess = F.relu(x_j + edge_attr)
return mess
def update(self, aggr_out):
return aggr_out