-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
137 lines (103 loc) · 4.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import copy
import torch
from torch import nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from models import RDN
from datasets import TrainDataset, EvalDataset
from utils import AverageMeter, calc_psnr, convert_rgb_to_y, denormalize
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train-file', type=str, required=True)
parser.add_argument('--eval-file', type=str, required=True)
parser.add_argument('--outputs-dir', type=str, required=True)
parser.add_argument('--weights-file', type=str)
parser.add_argument('--num-features', type=int, default=64)
parser.add_argument('--growth-rate', type=int, default=64)
parser.add_argument('--num-blocks', type=int, default=16)
parser.add_argument('--num-layers', type=int, default=8)
parser.add_argument('--scale', type=int, default=4)
parser.add_argument('--patch-size', type=int, default=32)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--num-epochs', type=int, default=800)
parser.add_argument('--num-workers', type=int, default=8)
parser.add_argument('--seed', type=int, default=123)
args = parser.parse_args()
args.outputs_dir = os.path.join(args.outputs_dir, 'x{}'.format(args.scale))
if not os.path.exists(args.outputs_dir):
os.makedirs(args.outputs_dir)
cudnn.benchmark = True
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(args.seed)
model = RDN(scale_factor=args.scale,
num_channels=3,
num_features=args.num_features,
growth_rate=args.growth_rate,
num_blocks=args.num_blocks,
num_layers=args.num_layers).to(device)
if args.weights_file is not None:
state_dict = model.state_dict()
for n, p in torch.load(args.weights_file, map_location=lambda storage, loc: storage).items():
if n in state_dict.keys():
state_dict[n].copy_(p)
else:
raise KeyError(n)
criterion = nn.L1Loss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
train_dataset = TrainDataset(args.train_file, patch_size=args.patch_size, scale=args.scale)
train_dataloader = DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
eval_dataset = EvalDataset(args.eval_file)
eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1)
best_weights = copy.deepcopy(model.state_dict())
best_epoch = 0
best_psnr = 0.0
for epoch in range(args.num_epochs):
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr * (0.1 ** (epoch // int(args.num_epochs * 0.8)))
model.train()
epoch_losses = AverageMeter()
with tqdm(total=(len(train_dataset) - len(train_dataset) % args.batch_size), ncols=80) as t:
t.set_description('epoch: {}/{}'.format(epoch, args.num_epochs - 1))
for data in train_dataloader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
preds = model(inputs)
loss = criterion(preds, labels)
epoch_losses.update(loss.item(), len(inputs))
optimizer.zero_grad()
loss.backward()
optimizer.step()
t.set_postfix(loss='{:.6f}'.format(epoch_losses.avg))
t.update(len(inputs))
if (epoch + 1) % 10 == 0:
torch.save(model.state_dict(), os.path.join(args.outputs_dir, 'epoch_{}.pth'.format(epoch)))
model.eval()
epoch_psnr = AverageMeter()
for data in eval_dataloader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
with torch.no_grad():
preds = model(inputs)
preds = convert_rgb_to_y(denormalize(preds.squeeze(0)), dim_order='chw')
labels = convert_rgb_to_y(denormalize(labels.squeeze(0)), dim_order='chw')
preds = preds[args.scale:-args.scale, args.scale:-args.scale]
labels = labels[args.scale:-args.scale, args.scale:-args.scale]
epoch_psnr.update(calc_psnr(preds, labels), len(inputs))
print('eval psnr: {:.2f}'.format(epoch_psnr.avg))
if epoch_psnr.avg > best_psnr:
best_epoch = epoch
best_psnr = epoch_psnr.avg
best_weights = copy.deepcopy(model.state_dict())
print('best epoch: {}, psnr: {:.2f}'.format(best_epoch, best_psnr))
torch.save(best_weights, os.path.join(args.outputs_dir, 'best.pth'))