-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·85 lines (72 loc) · 3.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/python
# -*- coding : utf-8 -*-
import numpy as np
import tensorflow as tf
import argparse, time, os, sys
from ops import *
from wavenet_model import Wavenet_Model
from train import Multi_GPU_train
os.environ['CUDA_VISIBLE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--train_dir', type=str, default='../train', help='data directory containing audio clip')
parser.add_argument('--test_dir', type=str, default='../test', help='data directory containing audio clip and transcription')
#parser.add_argument('--valid_data_dir', type=str, default='./validation')
parser.add_argument('--files_dir', type=str, default='./files')
parser.add_argument('--log_dir', type=str, default='./logs')
parser.add_argument('--checkpoint_dir', type=str, default='./checkpoint', help='To restore variables and model')
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--num_gpu', type=int, default=2)
parser.add_argument('--num_epoch', type=int, default=300000)
parser.add_argument('--valid_interval', type=int, default=1000)
parser.add_argument('--valid_iteration', type=int, default=100)
parser.add_argument('--learning_rate', type=float, default=0.002)
parser.add_argument('--is_train', type=str2bool, default='t')
parser.add_argument('--layer_norm', type=str2bool, default='n')
parser.add_argument('--init_from', type=str2bool, default='y', help='Continue training from saved model')
parser.add_argument('--shuffle', type=str2bool, default='t')
parser.add_argument('--num_features', type=int, default=39)
parser.add_argument('--num_classes', type=int, default=29, help='All lowercase letter, space, apstr, eos, blank : last class is always reserved for blank')
parser.add_argument('--seq_length', type=int, default=200, help='number of steps')
parser.add_argument('--mode', type=str2bool, default='n', help='No for ctc, Yes for clm')
parser.add_argument('--alpha', type=float, default=2.0, help='language model weight')
parser.add_argument('--beta', type=float, default=1.5, help='insertion bonus')
parser.add_argument('--beam_width', type=int, default=128)
parser.add_argument('--num_blocks', type=int, default=4)
parser.add_argument('--filter_width', type=int, default=9)
parser.add_argument('--skip_filter_width', type=int, default=3)
parser.add_argument('--num_wavenet_layers', type=int, default=9)
parser.add_argument('--num_hidden', type=int, default=256)
parser.add_argument('--causal', type=str2bool, default='n')
parser.add_argument('--dilated_activation', type=str, default='gated_linear', choices=['gated_linear', 'gated_tanh'])
args = parser.parse_args()
print(args)
if not os.path.exists(args.checkpoint_dir):
os.mkdir(args.checkpoint_dir)
if not os.path.exists(args.files_dir):
os.mkdir(args.files_dir)
if not os.path.exists(args.log_dir):
os.mkdir(args.log_dir)
run_config = tf.ConfigProto()
# GPU fraction to be allocated
#run_config = tf.ConfigProto(gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=self.args.gpu_fraction)
run_config.log_device_placement=False
run_config.gpu_options.allow_growth=True
run_config.allow_soft_placement=True
with tf.Session(config=run_config) as sess:
if args.is_train:
print('Training')
multi_gpu_sr = Multi_GPU_train(args, sess)
multi_gpu_sr.train()
else:
from decoder import DECODER
print('Decoding')
decoding = DECODER(args, sess)
def str2bool(v):
if v.lower() in ('yes', 'y', 'true', 't', 1):
return True
elif v.lower() in ('no', 'n', 'false', 'f', 0):
return False
if __name__ == '__main__':
main()