-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProject.aux
148 lines (148 loc) · 6.48 KB
/
Project.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
\relax
\citation{comfun}
\citation{donaldson}
\@writefile{toc}{\contentsline {chapter}{Abstract}{3}}
\@writefile{toc}{\contentsline {chapter}{Declaration}{4}}
\@writefile{toc}{\contentsline {chapter}{Introduction}{5}}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Preliminaries}{6}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\citation{Hatchers}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Riemann Surfaces}{8}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{RSChapter}{{2}{8}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Riemann surfaces and their properties}{8}}
\newlabel{bdefns}{{2.1}{8}}
\newlabel{rsdefn}{{2.1.1}{8}}
\citation{ahlfors}
\citation{ahlfors}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Quotients of the complex plane}{11}}
\newlabel{QuotientSection}{{2.2}{11}}
\citation{comfun}
\citation{Hatchers}
\citation{comfun}
\citation{comfun}
\citation{donaldson}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Maps between Riemann surfaces}{14}}
\citation{algebra}
\citation{donaldson}
\newlabel{PolesOnASphere}{{2.3.5}{16}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Covering spaces of Riemann surfaces}{16}}
\citation{comfun}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Automorphisms of Riemann surfaces}{17}}
\citation{Hatchers}
\citation{Hatchers}
\newlabel{LemmaOnCoveringSurfaces}{{2.4.4}{18}}
\citation{comfun}
\citation{conway}
\citation{ahlfors}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Automorphism groups of simply-connected Riemann surfaces}{20}}
\newlabel{Aut(C)}{{2.4.9}{20}}
\newlabel{AutSphere}{{2.4.10}{20}}
\citation{comfun}
\citation{comfun}
\citation{comfun}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces The same regular tiling of $\mathbb {D}$ and $\mathbb {H}$ by acting upon a heptagon on the left and right. This action can be described by the ``dual" tiling by hyperbolic $(2,3,7)$ triangles in the middle (notice that $14$ triangles fit inside a heptagon). Image source: https://en.wikipedia.org/wiki/Heptagonal\_tiling , Accessed: 20/08/2021.\relax }}{23}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces The same regular tiling of $\mathbb {D}$ and $\mathbb {H}$ by the artist M.C. Escher, achieved by acting upon the turtle figure by some elements of a discrete subgroup of $PSL(2,\mathbb {R})$. \newline Image source: http://www.josleys.com/show\_gallery.php?galid=290 , Accessed: 20/08/2021.\relax }}{23}}
\citation{donaldson}
\citation{calcohomo}
\citation{spivak}
\citation{calcohomo}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Calculus on Riemann Surfaces}{24}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Calculus on smooth, orientable surfaces}{24}}
\newlabel{Smooth Path}{{3.1.1}{24}}
\newlabel{TpX}{{3.1.2}{24}}
\newlabel{T*pX}{{3.1.3}{24}}
\citation{calcohomo}
\newlabel{AltSpc}{{3.1.4}{25}}
\newlabel{k-form}{{3.1.6}{25}}
\citation{calcohomo}
\citation{calcohomo}
\newlabel{exteriorD}{{3.1.9}{26}}
\newlabel{volumeform}{{3.1.11}{26}}
\citation{donaldson}
\newlabel{Integration}{{3.1.13}{27}}
\citation{spivak}
\citation{babyRudin}
\citation{spivak}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Complex structures}{29}}
\newlabel{Cstructure}{{3.2.1}{29}}
\citation{calcohomo}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Cohomology of surfaces}{31}}
\newlabel{deRham}{{3.3.1}{31}}
\citation{calcohomo}
\citation{calcohomo}
\citation{calcohomo}
\citation{donaldson}
\citation{Hatchers}
\citation{chern}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}The Uniformisation Theorem}{34}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}The Laplacian and Hilbert spaces}{34}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}The $\Delta $ operator and Harmonic functions}{34}}
\newlabel{LaplacianDef}{{4.1.1}{34}}
\newlabel{HarmonicDef}{{4.1.2}{35}}
\newlabel{HolIsHarm}{{4.1.3}{35}}
\newlabel{HarmRealHol}{{4.1.4}{35}}
\newlabel{MVT}{{4.1.5}{35}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1.2}Hilbert Spaces and the space $\mathcal {H}(X)$}{36}}
\citation{babyRudin}
\newlabel{dInnerProduct}{{4.1.9}{38}}
\newlabel{InnerLaplacian}{{4.1.10}{38}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}The Dirichlet Energy Functional}{39}}
\newlabel{rhohatlinear}{{4.2.2}{39}}
\citation{electromagentismBook}
\citation{jost}
\citation{donaldson}
\citation{donaldson}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}Showing the Dirichlet energy $\mathcal {L}$ is bounded from below}{42}}
\newlabel{quotedTheorem11}{{4.2.4}{42}}
\newlabel{quotedCorollary6}{{4.2.5}{42}}
\citation{donaldson}
\newlabel{PartitionOfUnity}{{4.2.6}{43}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Poisson's equation on compact Riemann surfaces}{44}}
\newlabel{compactPoisson}{{4.3.1}{44}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}The completion of $\mathcal {H}(X)$ and Weyl's lemma}{45}}
\newlabel{Hilbertsraumsection}{{4.3.1}{45}}
\newlabel{completeH}{{4.3.2}{45}}
\citation{notes}
\citation{rudin}
\citation{donaldson}
\newlabel{ConvolutionDefn}{{4.3.4}{48}}
\newlabel{WeylsLemmaCompact}{{4.3.5}{48}}
\newlabel{WeylsLemmaLocal}{{4.3.6}{48}}
\@writefile{toc}{\contentsline {section}{\numberline {4.4}Cohomology groups of compact Riemann surfaces}{49}}
\newlabel{noRiemannRoch}{{4.4}{49}}
\newlabel{meroFunctionOnGenusGSurface}{{4.4.2}{51}}
\newlabel{merofunctions}{{4.4.2}{51}}
\newlabel{ClassificationByGenus}{{4.4.3}{52}}
\@writefile{toc}{\contentsline {section}{\numberline {4.5}Poisson's equation on simply connected, non compact Riemann surfaces}{53}}
\newlabel{NonCompactPoissons}{{4.5.1}{53}}
\citation{donaldson}
\citation{donaldson}
\citation{notes}
\@writefile{toc}{\contentsline {section}{\numberline {4.6}The Uniformisation Theorem}{55}}
\newlabel{Uniformisation}{{4.6.1}{55}}
\newlabel{importantcorollary}{{4.6.2}{55}}
\citation{donaldson}
\citation{selb}
\@writefile{toc}{\contentsline {chapter}{Conclusion}{57}}
\bibcite{ahlfors}{1}
\bibcite{conway}{2}
\bibcite{chern}{3}
\bibcite{donaldson}{4}
\bibcite{electromagentismBook}{5}
\bibcite{Hatchers}{6}
\bibcite{comfun}{7}
\bibcite{jost}{8}
\bibcite{algebra}{9}
\bibcite{notes}{10}
\bibcite{calcohomo}{11}
\bibcite{rudin}{12}
\bibcite{babyRudin}{13}
\bibcite{selb}{14}
\bibcite{spivak}{15}