-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber-theory.tex
220 lines (195 loc) · 7.52 KB
/
number-theory.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
\chapter{Number theory}
\begin{definition}[Natural numbers]
Natural numbers is the set of all positive integers.
The symbol \N{} is used to denote them.
The set can be expressed as
\begin{equation}
\N = \{1,2,3,4,5,... \}
\end{equation}
The number is zero is not part of the natural numbers.
All positive integers including zero is denoted by \Nzero{} and can be expressed as
\begin{equation}
\Nzero = \N \cup \{0\} = \{0, 1,2,3,4,5,... \}
\end{equation}
\end{definition}
\begin{definition}[Natural numbers via Peano axioms]
The successor of a given number $n$ is denoted as $S(n)$.
\begin{enumerate}
\item 1 is the first natural number
\item $n \in \N \implies S(n) \ne 0$
\item $\forall n \in \N \implies S(n) \in \N$
\item $\forall n,m \in \N: S(n) = S(m) \implies n=m$
\item $\forall X: 1 \in X \land \forall n \in X \land S(n) \in X \implies \N \subseteq X$
\end{enumerate}
Please note: The natural numbers do not include zero here.
It might be defined different elsewhere.
\end{definition}
\begin{corollary}
When the natural numbers defined Peano axioms are extended by 0,
it is $S(0)=1$.
\end{corollary}
\begin{definition}[Addition in \Nzero]
Addition in \Nzero{} can be defined as:
\begin{equation}
\forall n,m \in \Nzero: n+0:=n \quad \land \quad n + S(m) := S(n + m)
\end{equation}
\end{definition}
\begin{corollary}
It can easily be seen, that the successor can be derived from addition:
\begin{equation}
S(n+0) = n + S(0) \quad \Leftrightarrow \quad S(n) = n + 1
\end{equation}
\end{corollary}
\begin{theorem}[The naturual numbers are closed under addition]
\begin{equation}
\forall n,m \in \Nzero: n + m \in \Nzero
\end{equation}
\end{theorem}
\begin{proof}
Proof is given by mathematical induction.
Let $a,n \in \Nzero$:
\emph{Base case:} For n = 1 that's clearly true.
\begin{equation}
a + n = a + 1 = a + S(0) \in \Nzero \quad \text{(see Peano axioms)}
\end{equation}
\emph{Induction requirement}: The equation is valid for n: $a + n \in \Nzero$.
\emph{Induction step:}
\begin{equation}
a + S(n) = a + (n + 1) = (a + n) + 1 = (a + n) + S(0) \in \Nzero
\end{equation}
\end{proof}
\begin{definition}[Multiplication in \Nzero]
Multiplication in \Nzero{} can be defined as:
\begin{equation}
\forall n,m \in \Nzero: n \cdot 0:=0 \quad \land \quad n \cdot S(m) := n + (n \cdot m)
\end{equation}
\end{definition}
\begin{corollary}
It can easily be seen, that the successor of zero is the multiplicative identity:
\begin{equation}
\forall n \in \Nzero: n \cdot S(0) = n + (n \cdot 0) = n
\end{equation}
\end{corollary}
\begin{theorem}[The naturual numbers are closed under multiplication]
\begin{equation}
\forall n,m \in \Nzero: n \cdot m \in \Nzero
\end{equation}
\end{theorem}
\begin{proof}
Proof is given by mathematical induction.
Let $a,n \in \Nzero$:
\emph{Base case:} For n = 1 that's clearly true.
\begin{equation}
a \cdot n = a \cdot 1 = a \in \Nzero
\end{equation}
\emph{Induction requirement}: The equation is valid for n: $a \cdot n \in \Nzero$.
\emph{Induction step:}
\begin{equation}
a \cdot S(n) = a \cdot (n + 1) = a + (a \cdot n)
\end{equation}
Since natural numbers are closed under addition and
$a \cdot n \in \Nzero \implies a + (a \cdot n) \in \Nzero$
\end{proof}
\begin{definition}[Negative integers]
Negative integers are defined as the additive inverse of natural numbers.
The minus sign is used to denote the additive inverse of a given natural number,
\begin{equation}
\forall a \in \N: \exists -a: a + (-a) = 0
\end{equation}
The symbol \Nminus{} is used to denote them.
\begin{equation}
\Nminus = \{-1, -2, -3, -4, ... \}
\end{equation}
\end{definition}
\begin{definition}[Integers]
Integers are the set of all positive natural integers, negative integers and the number zero.
\begin{equation}
\Z = \N \cup \Nminus \cup \{0 \} = \{...,-3,-2,-1,0,1,2,3,... \}
\end{equation}
The symbol \Z{} is used to denote them.
\end{definition}
\begin{corollary}
The integers \Z{} are closed under addition and multiplication.
The proof is similar to the one shown for natural numbers by applying mathematical induction.
\end{corollary}
\begin{definition}[Rational numbers]
Rational numbers is the set of all fractions.
The symbol \Q{} is used to denote them.
A rational number $a \in \Q$ can be expressed by a fraction with
two integers $p,q \in \Q$.
\begin{equation}
a = \frac{p}{q} \quad q \ne 0
\end{equation}
\end{definition}
\begin{lemma}
$N \subset \Nzero \subset \Z \subset \Q$
\end{lemma}
\begin{proof}
Since \Z{} is defined as all integers it also includes all positive integers \N{} and
number zero.
The set \Q{} contains all possible fractions, so it also includes fractions with denominator $1$
\begin{equation}
a = \frac{p}{q} = \frac{p}{1} = p \quad p \in \Nzero, q = 1
\end{equation}
\end{proof}
\begin{lemma}
$\sqrt{2} \notin \Q$.
\end{lemma}
\begin{proof}
Assume $\sqrt{2} \in \Q$:
Then, there are two integers $p,q \in \Z$, so that fraction $\frac{p}{q}$
can no longer be shortened.
Now, every integer $a$ can be expressed by
\begin{equation}
a = 2^k b \quad k \in \Nzero, b \in Z \implies a^2 = (2^k b)^2 = 2^{2k} b^2
\end{equation}
So, every squared integer has an even number of 2s.
However, $2 q^2 = p^2$ implies $p^2$ has odd number of 2s which contradicts the statement
that every squared integer has an even number of 2s.
\begin{equation}
2 q^2 = p^2 \implies p^2 = 2^{2k+1} b \quad \blitz \quad k \in \Nzero, b \in \Z
\end{equation}
\end{proof}
\begin{corollary}
Since $\sqrt{2} \notin \Q$, there is obviously a set of infinite numbers which are not part of
\Q{} and therefore, \Q{} is not complete.
\end{corollary}
\begin{proof}
It is possible to construct similar numbers like $\sqrt{2}$ and create a contradiction to show
that they are not part of the rational numbers.
For example,
\begin{equation}
\sqrt[2]{3} = \frac{p}{q} \quad p,q \in \Q, q \ne 0 \implies 3 q^2 = p^2 \implies p^2
\end{equation}
Every integer $a$ can be expressed by
\begin{equation}
a = 3^k b \quad k \in \Nzero, b \in Z \implies a^2 = (3^k b)^2 = 3^{2k} b^2
\end{equation}
Then, the contradiction is:
\begin{equation}
3 q^2 = p^2 \implies p^2 = 3^{3k+1} b \quad \blitz \quad k \in \Nzero, b \in \Z
\end{equation}
\end{proof}
\begin{definition}[Irrational numbers]
As one can see, the set of rational numbers do not cover all possible numbers.
Therefore, numbers which are not in \Q{} and are called irrational numbers.
\end{definition}
\begin{definition}[Real numbers]
Reel numbers is the set of all numbers rational and irrational numbers.
The symbol \R{} is used to denote them.
\end{definition}
\begin{lemma}
\begin{equation}
a^2 \in \R \setminus \Q \implies a \in \R \setminus \Q
\end{equation}
\end{lemma}
\begin{proof}
Assume $a \in \Q$, then:
\begin{equation}
\exists p,q \in \Z: a = \frac{p}{q} \implies a^2 = \frac{p^2}{q^2}
\end{equation}
Since \Z{} is closed for multiplication, $p^2,q^2 \in \Z$:
\begin{equation}
p^2,q^2 \in \Z \implies \frac{p^2}{q^2} \in \Q \implies a^2 \in \Q \quad \blitz
\end{equation}
\end{proof}