forked from WasifurRahman/BERT_multimodal_transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultimodal_driver.py
552 lines (432 loc) · 16.5 KB
/
multimodal_driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
from __future__ import absolute_import, division, print_function
import argparse
import csv
import os
import random
import pickle
import sys
import numpy as np
from typing import *
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import accuracy_score, f1_score
import wandb
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from torch.nn import CrossEntropyLoss, L1Loss, MSELoss
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef
from transformers import BertTokenizer, XLNetTokenizer, get_linear_schedule_with_warmup
from transformers.optimization import AdamW
from bert import MAG_BertForSequenceClassification
from xlnet import MAG_XLNetForSequenceClassification
from argparse_utils import str2bool, seed
from global_configs import ACOUSTIC_DIM, VISUAL_DIM, DEVICE
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str,
choices=["mosi", "mosei"], default="mosi")
parser.add_argument("--max_seq_length", type=int, default=50)
parser.add_argument("--train_batch_size", type=int, default=48)
parser.add_argument("--dev_batch_size", type=int, default=128)
parser.add_argument("--test_batch_size", type=int, default=128)
parser.add_argument("--n_epochs", type=int, default=40)
parser.add_argument("--beta_shift", type=float, default=1.0)
parser.add_argument("--dropout_prob", type=float, default=0.5)
parser.add_argument(
"--model",
type=str,
choices=["bert-base-uncased", "xlnet-base-cased"],
default="bert-base-uncased",
)
parser.add_argument("--learning_rate", type=float, default=1e-5)
parser.add_argument("--gradient_accumulation_step", type=int, default=1)
parser.add_argument("--warmup_proportion", type=float, default=0.1)
parser.add_argument("--seed", type=seed, default="random")
args = parser.parse_args()
def return_unk():
return 0
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, visual, acoustic, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.visual = visual
self.acoustic = acoustic
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class MultimodalConfig(object):
def __init__(self, beta_shift, dropout_prob):
self.beta_shift = beta_shift
self.dropout_prob = dropout_prob
def convert_to_features(examples, max_seq_length, tokenizer):
features = []
for (ex_index, example) in enumerate(examples):
(words, visual, acoustic), label_id, segment = example
tokens, inversions = [], []
for idx, word in enumerate(words):
tokenized = tokenizer.tokenize(word)
tokens.extend(tokenized)
inversions.extend([idx] * len(tokenized))
# Check inversion
assert len(tokens) == len(inversions)
aligned_visual = []
aligned_audio = []
for inv_idx in inversions:
aligned_visual.append(visual[inv_idx, :])
aligned_audio.append(acoustic[inv_idx, :])
visual = np.array(aligned_visual)
acoustic = np.array(aligned_audio)
# Truncate input if necessary
if len(tokens) > max_seq_length - 2:
tokens = tokens[: max_seq_length - 2]
acoustic = acoustic[: max_seq_length - 2]
visual = visual[: max_seq_length - 2]
if args.model == "bert-base-uncased":
prepare_input = prepare_bert_input
elif args.model == "xlnet-base-cased":
prepare_input = prepare_xlnet_input
input_ids, visual, acoustic, input_mask, segment_ids = prepare_input(
tokens, visual, acoustic, tokenizer
)
# Check input length
assert len(input_ids) == args.max_seq_length
assert len(input_mask) == args.max_seq_length
assert len(segment_ids) == args.max_seq_length
assert acoustic.shape[0] == args.max_seq_length
assert visual.shape[0] == args.max_seq_length
features.append(
InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
visual=visual,
acoustic=acoustic,
label_id=label_id,
)
)
return features
def prepare_bert_input(tokens, visual, acoustic, tokenizer):
CLS = tokenizer.cls_token
SEP = tokenizer.sep_token
tokens = [CLS] + tokens + [SEP]
# Pad zero vectors for acoustic / visual vectors to account for [CLS] / [SEP] tokens
acoustic_zero = np.zeros((1, ACOUSTIC_DIM))
acoustic = np.concatenate((acoustic_zero, acoustic, acoustic_zero))
visual_zero = np.zeros((1, VISUAL_DIM))
visual = np.concatenate((visual_zero, visual, visual_zero))
input_ids = tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * len(input_ids)
input_mask = [1] * len(input_ids)
pad_length = args.max_seq_length - len(input_ids)
acoustic_padding = np.zeros((pad_length, ACOUSTIC_DIM))
acoustic = np.concatenate((acoustic, acoustic_padding))
visual_padding = np.zeros((pad_length, VISUAL_DIM))
visual = np.concatenate((visual, visual_padding))
padding = [0] * pad_length
# Pad inputs
input_ids += padding
input_mask += padding
segment_ids += padding
return input_ids, visual, acoustic, input_mask, segment_ids
def prepare_xlnet_input(tokens, visual, acoustic, tokenizer):
CLS = tokenizer.cls_token
SEP = tokenizer.sep_token
PAD_ID = tokenizer.pad_token_id
# PAD special tokens
tokens = tokens + [SEP] + [CLS]
audio_zero = np.zeros((1, ACOUSTIC_DIM))
acoustic = np.concatenate((acoustic, audio_zero, audio_zero))
visual_zero = np.zeros((1, VISUAL_DIM))
visual = np.concatenate((visual, visual_zero, visual_zero))
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
segment_ids = [0] * (len(tokens) - 1) + [2]
pad_length = (args.max_seq_length - len(segment_ids))
# then zero pad the visual and acoustic
audio_padding = np.zeros((pad_length, ACOUSTIC_DIM))
acoustic = np.concatenate((audio_padding, acoustic))
video_padding = np.zeros((pad_length, VISUAL_DIM))
visual = np.concatenate((video_padding, visual))
input_ids = [PAD_ID] * pad_length + input_ids
input_mask = [0] * pad_length + input_mask
segment_ids = [3] * pad_length + segment_ids
return input_ids, visual, acoustic, input_mask, segment_ids
def get_tokenizer(model):
if model == "bert-base-uncased":
return BertTokenizer.from_pretrained(model)
elif model == "xlnet-base-cased":
return XLNetTokenizer.from_pretrained(model)
else:
raise ValueError(
"Expected 'bert-base-uncased' or 'xlnet-base-cased, but received {}".format(
model
)
)
def get_appropriate_dataset(data):
tokenizer = get_tokenizer(args.model)
features = convert_to_features(data, args.max_seq_length, tokenizer)
all_input_ids = torch.tensor(
[f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor(
[f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor(
[f.segment_ids for f in features], dtype=torch.long)
all_visual = torch.tensor([f.visual for f in features], dtype=torch.float)
all_acoustic = torch.tensor(
[f.acoustic for f in features], dtype=torch.float)
all_label_ids = torch.tensor(
[f.label_id for f in features], dtype=torch.float)
dataset = TensorDataset(
all_input_ids,
all_visual,
all_acoustic,
all_input_mask,
all_segment_ids,
all_label_ids,
)
return dataset
def set_up_data_loader():
with open(f"datasets/{args.dataset}.pkl", "rb") as handle:
data = pickle.load(handle)
train_data = data["train"]
dev_data = data["dev"]
test_data = data["test"]
train_dataset = get_appropriate_dataset(train_data)
dev_dataset = get_appropriate_dataset(dev_data)
test_dataset = get_appropriate_dataset(test_data)
num_train_optimization_steps = (
int(
len(train_dataset) / args.train_batch_size /
args.gradient_accumulation_step
)
* args.n_epochs
)
train_dataloader = DataLoader(
train_dataset, batch_size=args.train_batch_size, shuffle=True
)
dev_dataloader = DataLoader(
dev_dataset, batch_size=args.dev_batch_size, shuffle=True
)
test_dataloader = DataLoader(
test_dataset, batch_size=args.test_batch_size, shuffle=True,
)
return (
train_dataloader,
dev_dataloader,
test_dataloader,
num_train_optimization_steps,
)
def set_random_seed(seed: int):
"""
Helper function to seed experiment for reproducibility.
If -1 is provided as seed, experiment uses random seed from 0~9999
Args:
seed (int): integer to be used as seed, use -1 to randomly seed experiment
"""
print("Seed: {}".format(seed))
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
torch.backends.cudnn.deterministic = True
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def prep_for_training(num_train_optimization_steps: int):
multimodal_config = MultimodalConfig(
beta_shift=args.beta_shift, dropout_prob=args.dropout_prob
)
if args.model == "bert-base-uncased":
model = MAG_BertForSequenceClassification.from_pretrained(
args.model, multimodal_config=multimodal_config, num_labels=1,
)
elif args.model == "xlnet-base-cased":
model = MAG_XLNetForSequenceClassification.from_pretrained(
args.model, multimodal_config=multimodal_config, num_labels=1
)
model.to(DEVICE)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in param_optimizer if not any(nd in n for nd in no_decay)
],
"weight_decay": 0.01,
},
{
"params": [
p for n, p in param_optimizer if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_proportion * num_train_optimization_steps,
num_training_steps=num_train_optimization_steps,
)
return model, optimizer, scheduler
def train_epoch(model: nn.Module, train_dataloader: DataLoader, optimizer, scheduler):
model.train()
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(DEVICE) for t in batch)
input_ids, visual, acoustic, input_mask, segment_ids, label_ids = batch
visual = torch.squeeze(visual, 1)
acoustic = torch.squeeze(acoustic, 1)
outputs = model(
input_ids,
visual,
acoustic,
token_type_ids=segment_ids,
attention_mask=input_mask,
labels=None,
)
logits = outputs[0]
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), label_ids.view(-1))
if args.gradient_accumulation_step > 1:
loss = loss / args.gradient_accumulation_step
loss.backward()
tr_loss += loss.item()
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_step == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
return tr_loss / nb_tr_steps
def eval_epoch(model: nn.Module, dev_dataloader: DataLoader, optimizer):
model.eval()
dev_loss = 0
nb_dev_examples, nb_dev_steps = 0, 0
with torch.no_grad():
for step, batch in enumerate(tqdm(dev_dataloader, desc="Iteration")):
batch = tuple(t.to(DEVICE) for t in batch)
input_ids, visual, acoustic, input_mask, segment_ids, label_ids = batch
visual = torch.squeeze(visual, 1)
acoustic = torch.squeeze(acoustic, 1)
outputs = model(
input_ids,
visual,
acoustic,
token_type_ids=segment_ids,
attention_mask=input_mask,
labels=None,
)
logits = outputs[0]
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), label_ids.view(-1))
if args.gradient_accumulation_step > 1:
loss = loss / args.gradient_accumulation_step
dev_loss += loss.item()
nb_dev_steps += 1
return dev_loss / nb_dev_steps
def test_epoch(model: nn.Module, test_dataloader: DataLoader):
model.eval()
preds = []
labels = []
with torch.no_grad():
for batch in tqdm(test_dataloader):
batch = tuple(t.to(DEVICE) for t in batch)
input_ids, visual, acoustic, input_mask, segment_ids, label_ids = batch
visual = torch.squeeze(visual, 1)
acoustic = torch.squeeze(acoustic, 1)
outputs = model(
input_ids,
visual,
acoustic,
token_type_ids=segment_ids,
attention_mask=input_mask,
labels=None,
)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
label_ids = label_ids.detach().cpu().numpy()
logits = np.squeeze(logits).tolist()
label_ids = np.squeeze(label_ids).tolist()
preds.extend(logits)
labels.extend(label_ids)
preds = np.array(preds)
labels = np.array(labels)
return preds, labels
def test_score_model(model: nn.Module, test_dataloader: DataLoader, use_zero=False):
preds, y_test = test_epoch(model, test_dataloader)
non_zeros = np.array(
[i for i, e in enumerate(y_test) if e != 0 or use_zero])
preds = preds[non_zeros]
y_test = y_test[non_zeros]
mae = np.mean(np.absolute(preds - y_test))
corr = np.corrcoef(preds, y_test)[0][1]
preds = preds >= 0
y_test = y_test >= 0
f_score = f1_score(y_test, preds, average="weighted")
acc = accuracy_score(y_test, preds)
return acc, mae, corr, f_score
def train(
model,
train_dataloader,
validation_dataloader,
test_data_loader,
optimizer,
scheduler,
):
valid_losses = []
test_accuracies = []
for epoch_i in range(int(args.n_epochs)):
train_loss = train_epoch(model, train_dataloader, optimizer, scheduler)
valid_loss = eval_epoch(model, validation_dataloader, optimizer)
test_acc, test_mae, test_corr, test_f_score = test_score_model(
model, test_data_loader
)
print(
"epoch:{}, train_loss:{}, valid_loss:{}, test_acc:{}".format(
epoch_i, train_loss, valid_loss, test_acc
)
)
valid_losses.append(valid_loss)
test_accuracies.append(test_acc)
wandb.log(
(
{
"train_loss": train_loss,
"valid_loss": valid_loss,
"test_acc": test_acc,
"test_mae": test_mae,
"test_corr": test_corr,
"test_f_score": test_f_score,
"best_valid_loss": min(valid_losses),
"best_test_acc": max(test_accuracies),
}
)
)
def main():
wandb.init(project="MAG")
wandb.config.update(args)
set_random_seed(args.seed)
(
train_data_loader,
dev_data_loader,
test_data_loader,
num_train_optimization_steps,
) = set_up_data_loader()
model, optimizer, scheduler = prep_for_training(
num_train_optimization_steps)
train(
model,
train_data_loader,
dev_data_loader,
test_data_loader,
optimizer,
scheduler,
)
if __name__ == "__main__":
main()