-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdata.py
415 lines (384 loc) · 25.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import random
import math
import os
import pickle
from collections import defaultdict, namedtuple
import string
os.environ['TOKENIZERS_PARALLELISM'] = 'false' # turn off since we're using multiple threads for loading anyway
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline, set_seed, GPT2Tokenizer, GPT2Model
import numpy as np
from tqdm import tqdm
import torch
from util import suppress_stdout
from poetry_util import is_iambic, count_syllables, get_rhymes, get_rhyme_group
from constants import *
DatasetInfo = namedtuple('DatasetInfo',
['index2word', 'word2index', 'total_words', 'vocab', 'glove_embeddings'])
RhymeInfo = namedtuple('RhymeInfo',
['word2rhyme_group', 'rhyme_group_counts', 'rhyme_groups', 'index2rhyme_group', 'rhyme_group2index', 'total_rhyme_groups'])
def collate(batch):
pad_id = batch[0][4]
inputs = [b[0] for b in batch]
lengths = torch.LongTensor([b[1] for b in batch])
max_length = lengths.max()
for i in range(len(inputs)):
if len(inputs[i]) < max_length:
inputs[i] = torch.cat([inputs[i], torch.zeros(max_length - len(inputs[i])).long()], dim=0) # actually 0 is fine as pad since it's masked out
inputs = torch.stack(inputs, dim=0)
future_words = torch.LongTensor([b[2] for b in batch]).unsqueeze(0).expand(len(batch), -1).clone() # batch x N=batch
labels = torch.zeros_like(future_words).long()
labels = labels.scatter(1, torch.arange(len(batch)).unsqueeze(1), torch.ones(len(batch)).long().unsqueeze(1)).clone()
log_probs = torch.Tensor([b[3] for b in batch])
classification_labels = [b[5] for b in batch] # batch
if type(classification_labels[0]) == list:
for i in range(len(classification_labels)):
assert len(classification_labels[i]) == lengths[i]
if len(classification_labels[i]) < max_length:
classification_labels[i] = torch.cat([torch.LongTensor(classification_labels[i]), -1 + torch.zeros(max_length - len(classification_labels[i])).long()], dim=0)
else:
classification_labels[i] = torch.LongTensor(classification_labels[i])
classification_labels = torch.stack(classification_labels, dim=0) # batch x seq
else:
assert type(classification_labels[0]) == int
classification_labels = torch.LongTensor(classification_labels) # they're just int labels
syllables_to_go = torch.LongTensor([b[6] for b in batch])
future_word_num_syllables = torch.LongTensor([b[7] for b in batch])
rhyme_group_index = torch.LongTensor([b[8] for b in batch])
return (inputs, lengths, future_words, log_probs, labels, classification_labels, syllables_to_go, future_word_num_syllables, rhyme_group_index)
def load_rhyme_info(index2word, vocab):
word2rhyme_group = defaultdict(lambda: UNKNOWN_RHYME_GROUP)
rhyme_group_counts = defaultdict(lambda: 0)
rhyme_groups = set()
for word in index2word:
try:
rhyme_group = get_rhyme_group(word)
word2rhyme_group[word] = rhyme_group
rhyme_group_counts[rhyme_group] += (vocab[word] if word in vocab else 1) # for rare words not in vocab, just use 1
rhyme_groups.add(rhyme_group)
except:
rhyme_group_counts[UNKNOWN_RHYME_GROUP] += (vocab[word] if word in vocab else 1)
index2rhyme_group = [UNKNOWN_RHYME_GROUP] + sorted(list(rhyme_groups))
rhyme_group2index = {s: i for i, s in enumerate(index2rhyme_group)}
total_rhyme_groups = sum(rhyme_group_counts.values())
return RhymeInfo(word2rhyme_group=dict(word2rhyme_group),
rhyme_group_counts=dict(rhyme_group_counts),
rhyme_groups=rhyme_groups,
index2rhyme_group=index2rhyme_group,
rhyme_group2index=rhyme_group2index,
total_rhyme_groups=total_rhyme_groups)
class Dataset:
def __init__(self, args):
print('loading data')
random.seed(args.seed)
self.batch_size = args.batch_size
self.data_dir = args.data_dir
self.topic = args.task == 'topic'
self.formality = args.task == 'formality'
self.iambic = args.task == 'iambic'
self.rhyme = args.task == 'rhyme'
self.newline = args.task == 'newline'
self.tokenizer = AutoTokenizer.from_pretrained(FORMALITY_MODEL_STRING if self.formality else TOPIC_MODEL_STRING)
self.tokenizer.add_special_tokens({'pad_token': PAD_TOKEN})
self.gpt_pad_id = self.tokenizer.encode(PAD_TOKEN)[0] # actually just the vocab size
sentences = []
self.vocab = defaultdict(lambda: 0)
if self.formality:
self.vocab['placeholder'] = 1 # anything so we don't crash
train, val, test = [], [], []
for category, label in [('formal', 1), ('informal', 0)]:
with open(os.path.join(args.data_dir, 'train', category), 'r') as rf:
for i, line in enumerate(rf):
if len(line) > FORMALITY_MAX_LEN:
line = ' '.join(line.strip()[:FORMALITY_MAX_LEN].split()[:-1]) # cutoff words until below max len; chosen so only ~20 examples affected in dataset
if i < FORMALITY_VAL_SIZE // 2:
val.append((line.strip(), label))
else:
train.append((line.strip(), label))
with open(os.path.join(args.data_dir, 'test', category), 'r') as rf:
for line in rf:
if len(line) > FORMALITY_MAX_LEN:
line = ' '.join(line.strip()[:FORMALITY_MAX_LEN].split()[:-1]) # cutoff words until below max len
test.append((line.strip(), label))
self.splits = {}
self.splits['train'], self.splits['val'], self.splits['test'] = train, val, test
else: # topic / poetry
for root, _, filenames in os.walk(args.data_dir):
for fname in filenames:
with open(os.path.join(root, fname), 'r') as rf:
for line in rf:
sentences.append(line.strip())
for word in line.strip().split(' '):
self.vocab[word] += 1
random.shuffle(sentences)
self.splits = {}
if args.debug:
self.splits['val'] = sentences
self.splits['test'] = sentences
self.splits['train'] = sentences
else:
self.splits['val'] = sentences[:TOPIC_VAL_SIZE]
self.splits['test'] = sentences[TOPIC_VAL_SIZE:2*TOPIC_VAL_SIZE]
self.splits['train'] = sentences[2*TOPIC_VAL_SIZE:]
if args.dataset_info is not None:
print('loading dataset info from file')
with open(args.dataset_info, 'rb') as rf:
dataset_info = pickle.load(rf)
self.vocab, self.total_words, self.index2word, self.word2index, self.glove_embeddings = \
dataset_info.vocab, dataset_info.total_words, dataset_info.index2word, dataset_info.word2index, dataset_info.glove_embeddings
self.dataset_info = dataset_info
else:
print('generating dataset info from scratch')
words_values = list(self.vocab.items())
words_values = sorted(words_values, key=lambda x: x[1], reverse=True)
if args.glove_file is None:
print('no glove embeddings given')
for word, _ in words_values[VOCAB_SIZE:]: # only use somewhat common tokens
del self.vocab[word]
glove_embeddings = None
else:
print('loading glove embeddings')
glove_embeddings = {}
with open(args.glove_file, 'r') as rf:
for i, line in enumerate(rf):
if i % GLOVE_PRINT_PROGRESS_FREQ == 0:
print(i)
line = line.strip().split()
if len(line) != GLOVE_DIM + 1:
continue # skip multi-word embeddings which are rare anyway
glove_embeddings[line[0]] = [float(x) for x in line[1:]]
for word, _ in words_values:
if word not in glove_embeddings:
del self.vocab[word]
self.total_words = sum(self.vocab.values())
self.index2word = [PAD_TOKEN] + sorted(list(self.vocab.keys()))
self.word2index = {s: i for i, s in enumerate(self.index2word)}
self.vocab = dict(self.vocab) # so we can pickle later
if glove_embeddings is None:
self.glove_embeddings = None
else:
self.glove_embeddings = torch.stack([torch.zeros(GLOVE_DIM)] + [torch.Tensor(glove_embeddings[word]) for word in self.index2word[1:]], dim=0)
self.dataset_info = DatasetInfo(index2word=self.index2word,
word2index=self.word2index,
total_words=self.total_words,
vocab=self.vocab,
glove_embeddings=self.glove_embeddings)
if self.rhyme:
if args.rhyme_info is not None:
print('loading rhyme info from file')
with open(args.rhyme_info, 'rb') as rf:
self.rhyme_info = pickle.load(rf)
else:
self.rhyme_info = load_rhyme_info(self.index2word, self.vocab)
self.word2rhyme_group, self.rhyme_group_counts, self.rhyme_groups, self.index2rhyme_group, self.rhyme_group2index, self.total_rhyme_groups = \
defaultdict(lambda: UNKNOWN_RHYME_GROUP, self.rhyme_info.word2rhyme_group), self.rhyme_info.rhyme_group_counts, self.rhyme_info.rhyme_groups, self.rhyme_info.index2rhyme_group, self.rhyme_info.rhyme_group2index, self.rhyme_info.total_rhyme_groups
print('done loading data')
print('split sizes:')
for key in ['train', 'val', 'test']:
print(key, len(self.splits[key]))
if not self.formality:
print('total words', self.total_words)
print('vocab size', len(self.index2word))
def shuffle(self, split, seed=None):
assert split in ['train', 'val', 'test']
if seed is not None:
random.seed(seed)
random.shuffle(self.splits[split])
def loader(self, split, num_workers=20, indices=None):
assert split in ['train', 'val', 'test']
data = self.splits[split] if indices is None else [self.splits[split][i] for i in indices]
return torch.utils.data.DataLoader(SplitLoader(data, self), batch_size=self.batch_size, pin_memory=True, collate_fn=collate, num_workers=num_workers)
class SplitLoader(torch.utils.data.IterableDataset):
def __init__(self, data, parent):
super(SplitLoader).__init__()
self.data = data
self.pos = 0
self.parent = parent
def __len__(self):
return len(self.data)
def __iter__(self):
return self
def __next__(self):
increment = 1
worker_info = torch.utils.data.get_worker_info()
if worker_info is not None: # # in a worker process
increment = worker_info.num_workers
worker_id = worker_info.id
if self.pos == 0:
self.pos = worker_id
valid = False
while not valid:
if self.pos >= len(self):
raise StopIteration
if self.parent.topic:
failed = False
future_word_num_syllables, rhyme_group_index, syllables_to_go = -1, -1, -1
raw_sentence, classification_label = self.data[self.pos], -1
original_sentence = raw_sentence.split()
sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
length = len(sentence)
min_sentence_length = MIN_SENTENCE_LENGTH
if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
pos_to_split = random.randint(1, length - 1) # for lm, learn all positions at once
inp = sentence[:pos_to_split]
length = len(inp)
num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
if not failed and num_words_in_input < len(original_sentence):
future_word_position_max = len(original_sentence) - 1
future_word_position = random.randint(num_words_in_input-1, future_word_position_max) # allow the last possibly partial word though
future_word = original_sentence[future_word_position]
unstripped_future_word = future_word
future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
if not failed and future_word in self.parent.word2index.keys():
word_log_prob = math.log(self.parent.vocab[future_word] / self.parent.total_words) # roughly baseline prob of word under noise model
future_word = self.parent.word2index[future_word]
pad_id = self.parent.gpt_pad_id
example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
valid = not failed
elif self.parent.formality:
future_word_num_syllables, rhyme_group_index, syllables_to_go = -1, -1, -1
raw_sentence, classification_label = self.data[self.pos]
original_sentence = raw_sentence.split()
sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
length = len(sentence)
min_sentence_length = MIN_SENTENCE_LENGTH
if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
pos_to_split = length # no need to split; we're going to train on all possible prefixes simultaneously for efficiency
inp = sentence[:pos_to_split]
length = len(inp)
num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
# only look up to 10 words ahead if we're doing count syllables, since we'll filter out anything more than 10 syllables ahead anyway
future_word_position_max = len(original_sentence) - 1
future_word_position = 0
future_word = 'placeholder'
unstripped_future_word = future_word
future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
word_log_prob, future_word = 0, 0
pad_id = self.parent.gpt_pad_id
example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
valid = True
elif self.parent.iambic:
failed = False
future_word_num_syllables, rhyme_group_index, syllables_to_go = -1, -1, -1
raw_sentence, classification_label = self.data[self.pos], -1
original_sentence = raw_sentence.split()
sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
length = len(sentence)
min_sentence_length = MIN_SENTENCE_LENGTH
if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
pos_to_split = random.randint(0, length - 1)
# try to get a subseq of exactly 10 syllables
inp = sentence[pos_to_split:]
num_syllables = 0
checked = False
for i in range(1, len(inp)):
decoded = self.parent.tokenizer.decode(inp[:i])
num_syllables = count_syllables(decoded)
if num_syllables > POETRY_LINE_SYLLABLES:
inp = inp[:i-1] # might get a few data points where the split is in the middle of a word, but it should be ok for learning.
last_line_length = i-1
decoded = self.parent.tokenizer.decode(inp)
num_syllables = count_syllables(decoded)
checked = True
break
if not checked or num_syllables != POETRY_LINE_SYLLABLES:
failed = True
length = len(inp)
num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
classification_label = [is_iambic(self.parent.tokenizer.decode(inp)) for _ in range(length)] # predict for whole seq including future
# only look up to 10 words ahead if we're doing count syllables, since we'll filter out anything more than 10 syllables ahead anyway
future_word_position_max = len(original_sentence) - 1
future_word_position = 0
future_word = 'placeholder'
unstripped_future_word = future_word
future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
if not failed:
word_log_prob, future_word = 0, 0
pad_id = self.parent.gpt_pad_id
example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
valid = not failed
elif self.parent.rhyme:
failed = False
future_word_num_syllables, rhyme_group_index = -1, -1
raw_sentence, classification_label = self.data[self.pos], -1
original_sentence = raw_sentence.split()
sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
length = len(sentence)
min_sentence_length = MIN_SENTENCE_LENGTH
if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
pos_to_split = random.randint(1, length - 1) # for lm, learn all positions at once
inp = sentence[:pos_to_split]
length = len(inp)
num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
if not failed and num_words_in_input < len(original_sentence):
# only look up to 10 words ahead if we're doing count syllables, since we'll filter out anything more than 10 syllables ahead anyway
future_word_position_max = min(len(original_sentence) - 1, num_words_in_input + MAX_COUNT_SYLLABLE_DIST)
future_word_position = random.randint(num_words_in_input-1, future_word_position_max) # allow the last possibly partial word though
future_word = original_sentence[future_word_position]
unstripped_future_word = future_word
future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
words_in_between = original_sentence[num_words_in_input-1:future_word_position+1]
syllables_to_go = count_syllables(' '.join(words_in_between))
if syllables_to_go > MAX_COUNT_SYLLABLE_DIST:
failed = True
future_word_num_syllables = count_syllables(future_word)
rhyme_group = self.parent.word2rhyme_group[future_word]
rhyme_group_index = self.parent.rhyme_group2index[rhyme_group]
# truncate context a bit since we're just doing couplets. random length from 1 to max desired length for this purpose.
desired_length = random.randint(1, MAX_COUNT_SYLLABLE_INPUT_LENGTH)
inp = inp[-desired_length:]
length = len(inp)
if not failed and future_word in self.parent.word2index.keys():
word_log_prob = math.log(self.parent.rhyme_group_counts[rhyme_group] / self.parent.total_rhyme_groups)
future_word = rhyme_group_index # future conditioning is just the rhyme group in this case
pad_id = self.parent.gpt_pad_id
example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
valid = not failed
elif self.parent.newline:
failed = False
future_word_num_syllables, rhyme_group_index = -1, -1
raw_sentence, classification_label = self.data[self.pos], -1
original_sentence = raw_sentence.split()
sentence = self.parent.tokenizer.encode(raw_sentence, return_tensors='pt')[0]
length = len(sentence)
min_sentence_length = MIN_SENTENCE_LENGTH
if len(sentence) > min_sentence_length: # set to 3. well, everything in data is > 3 for the bag of words task
pos_to_split = random.randint(1, length - 1) # for lm, learn all positions at once
inp = sentence[:pos_to_split]
while pos_to_split < len(sentence):
if len(self.parent.tokenizer.decode(inp).split()) == len(self.parent.tokenizer.decode(sentence[:pos_to_split + 1]).split()):
pos_to_split += 1
inp = sentence[:pos_to_split]
else:
break
length = len(inp)
num_words_in_input = len(self.parent.tokenizer.decode(inp).split())
if not failed and num_words_in_input < len(original_sentence):
# only look up to 10 words ahead if we're doing count syllables, since we'll filter out anything more than 10 syllables ahead anyway
future_word_position_max = len(original_sentence) - 1
future_word_position = random.randint(num_words_in_input-1, future_word_position_max) # allow the last possibly partial word though
future_word = original_sentence[future_word_position]
unstripped_future_word = future_word
future_word = future_word.strip().strip(string.punctuation) # NOTE: we didn't strip punctuation for the topic bag of words paper experiments for our method. it doesn't make much difference, though.
# future_word = original_sentence[-1] # useful for debugging
words_in_between = original_sentence[num_words_in_input-1:future_word_position+1]
syllables_to_go = count_syllables(' '.join(words_in_between))
if syllables_to_go > MAX_COUNT_SYLLABLE_DIST:
failed = True
# truncate context a bit since we're just doing couplets. random length from 1 to max desired length for this purpose.
desired_length = random.randint(1, MAX_COUNT_SYLLABLE_INPUT_LENGTH)
# desired_length = 10 # useful for debugging
inp = inp[-desired_length:]
length = len(inp)
true_label = 1 if unstripped_future_word.strip()[-1] in PHRASE_ENDS else 0 # common ways to end a phrase
classification_label = [-1 for _ in range(length)]
classification_label[-1] = true_label # only learn at the last position
if not failed and future_word in self.parent.word2index.keys():
word_log_prob = math.log(self.parent.vocab[future_word] / self.parent.total_words) # roughly baseline prob of word under noise model
future_word = self.parent.word2index[future_word]
pad_id = self.parent.gpt_pad_id
example = (inp, length, future_word, word_log_prob, pad_id, classification_label, syllables_to_go, future_word_num_syllables, rhyme_group_index)
valid = not failed
else:
raise NotImplementedError
self.pos += increment
return example