-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_cls.py
305 lines (260 loc) · 11.3 KB
/
main_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
'''
Date: 2021-11-28 12:27:05
LastEditors: Liu Yahui
LastEditTime: 2022-06-13 04:29:58
'''
# Reference: https://github.com/tiangexiang/CurveNet
from __future__ import print_function
import os
import argparse
import logging
import shutil
import hydra
import omegaconf
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR, StepLR
from warmup_scheduler import GradualWarmupScheduler
from data_util import ModelNet40, ScanObjectNN
from models.PointConT import PointConT_cls
import numpy as np
from torch.utils.data import DataLoader
from util import cal_loss, Wandb, profile_model
import rsmix_provider
import sklearn.metrics as metrics
from torch.utils.tensorboard import SummaryWriter
def _init_(seed):
# fix random seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
torch.set_printoptions(10)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
os.environ['PYTHONHASHSEED'] = str(seed)
def train(args):
omegaconf.OmegaConf.set_struct(args, False)
writer = SummaryWriter(log_dir=args.log_dir)
logger = logging.getLogger(__name__)
logger.info('Working path: %s' % str(os.getcwd()))
logger.info('Random seed is set to %s ...' % str(args.seed))
# data loading
logger.info('Load %s dataset ...' % args.dataset)
DATA_PATH = hydra.utils.to_absolute_path(args.dataset_dir)
if args.dataset == 'ModelNet40':
train_loader = DataLoader(ModelNet40(DATA_PATH, partition='train', num_points=args.num_points), num_workers=8,
batch_size=args.batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(ModelNet40(DATA_PATH, partition='test', num_points=args.num_points), num_workers=8,
batch_size=args.test_batch_size, shuffle=False, drop_last=False)
elif args.dataset == 'ScanObjectNN':
train_loader = DataLoader(ScanObjectNN(DATA_PATH, partition='training', num_points=args.num_points), num_workers=8,
batch_size=args.batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(ScanObjectNN(DATA_PATH, partition='test', num_points=args.num_points), num_workers=8,
batch_size=args.test_batch_size, shuffle=False, drop_last=False)
else:
raise NotImplementedError
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
logger.info('Using GPU_idx : %s' % str(args.gpu))
# model loading
logger.info('Load %s model ...' % args.model_name)
model = PointConT_cls(args).cuda()
# model = nn.DataParallel(model)
if args.use_sgd:
logger.info("Use SGD")
opt = optim.SGD(model.parameters(), lr=args.lr*100, momentum=args.momentum, weight_decay=1e-4)
else:
logger.info("Use Adam")
opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4)
if args.scheduler == 'cos':
scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=1e-3)
elif args.scheduler == 'step':
scheduler = StepLR(opt, step_size=20, gamma=0.7)
if args.warm_up:
scheduler = GradualWarmupScheduler(
opt, multiplier=1, total_epoch=10, after_scheduler=scheduler)
criterion = cal_loss
shutil.copy(hydra.utils.to_absolute_path('models/' + args.model_name + '_util.py'), '.')
shutil.copy(hydra.utils.to_absolute_path('models/' + args.model_name + '.py'), '.')
try:
checkpoint = torch.load('model.pth')
start_epoch = checkpoint['epoch']
best_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model_state_dict'])
opt.load_state_dict(checkpoint['optimizer_state_dict'])
best_test_acc = checkpoint['test_acc']
logger.info('Use pretrain model')
except:
logger.info('No existing model, starting training from scratch...')
start_epoch = 0
best_epoch = 0
best_test_acc = 0
# start training
logger.info('Start training...')
for epoch in range(start_epoch, args.epochs):
logger.info('Epoch (%d/%s):' % (epoch + 1, args.epochs))
####################
# Train
####################
train_loss = 0.0
count = 0.0
model.train()
train_pred = []
train_true = []
for data, label in tqdm(train_loader):
'''
RSMIX Augmentation, inhereted from
https://github.com/dogyoonlee/RSMix
'''
rsmix = False
r = np.random.rand(1)
if args.beta > 0 and r < args.rsmix_prob:
rsmix = True
data = data.cpu().numpy()
data, lam, label, label_b = rsmix_provider.rsmix(
data, label, beta=args.beta, n_sample=args.rsmix_nsample)
data = torch.FloatTensor(data)
lam = torch.FloatTensor(lam)
if args.dataset == 'ScanObjectNN':
label = torch.FloatTensor(label)
label_b = torch.FloatTensor(label_b)
lam, label_b = lam.cuda(), label_b.cuda().squeeze()
data, label = data.cuda(), label.cuda().squeeze()
if rsmix:
batch_size = data.size()[0]
opt.zero_grad()
logits = model(data)
loss = 0
for i in range(batch_size):
loss_tmp = criterion(logits[i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1-lam[i]) \
+ criterion(logits[i].unsqueeze(0), label_b[i].unsqueeze(0).long()) * lam[i]
loss += loss_tmp
loss = loss/batch_size
else:
batch_size = data.size()[0]
opt.zero_grad()
logits = model(data)
loss = criterion(logits, label)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
opt.step()
preds = logits.max(dim=1)[1]
count += batch_size
train_loss += loss.item() * batch_size
train_true.append(label.cpu().numpy())
train_pred.append(preds.detach().cpu().numpy())
if args.scheduler == 'cos':
scheduler.step()
elif args.scheduler == 'step':
if opt.param_groups[0]['lr'] > 1e-5:
scheduler.step()
if opt.param_groups[0]['lr'] < 1e-5:
for param_group in opt.param_groups:
param_group['lr'] = 1e-5
train_true = np.concatenate(train_true)
train_pred = np.concatenate(train_pred)
train_loss = train_loss*1.0/count
train_acc = metrics.accuracy_score(train_true, train_pred)
logger.info('Train loss: %.6f, train acc: %.6f' % (train_loss, train_acc))
####################
# Test
####################
with torch.no_grad():
test_loss = 0.0
count = 0.0
model.eval()
test_pred = []
test_true = []
for data, label in test_loader:
data, label = data.cuda(), label.cuda().squeeze()
batch_size = data.size()[0]
logits = model(data)
loss = criterion(logits, label)
preds = logits.max(dim=1)[1]
count += batch_size
test_loss += loss.item() * batch_size
test_true.append(label.cpu().numpy())
test_pred.append(preds.detach().cpu().numpy())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
test_loss = test_loss*1.0/count
test_acc = metrics.accuracy_score(test_true, test_pred)
logger.info('Test loss: %.6f, test acc: %.6f' % (test_loss, test_acc))
writer.add_scalars("Loss", {'train':train_loss, 'test':test_loss}, epoch)
writer.add_scalars("Acc", {'train':train_acc, 'test':test_acc}, epoch)
if test_acc >= best_test_acc:
logger.info('Save model...')
best_test_acc = test_acc
best_epoch = epoch + 1
state = {
'epoch': best_epoch,
'test_acc': test_acc,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': opt.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
}
torch.save(state, 'model.pth')
logger.info('best: %.3f' % best_test_acc)
writer.add_scalar('best_test', best_test_acc, epoch)
# end of training
logger.info('End of training...')
writer.add_scalar('test_oa', best_test_acc, best_epoch)
writer.flush()
writer.close()
def test(args):
logger = logging.getLogger(__name__)
# data loading
DATA_PATH = hydra.utils.to_absolute_path(args.dataset_dir)
if args.dataset == 'ModelNet40':
test_loader = DataLoader(ModelNet40(DATA_PATH, partition='test', num_points=args.num_points), num_workers=8,
batch_size=args.test_batch_size, shuffle=False, drop_last=False)
elif args.dataset == 'ScanObjectNN':
test_loader = DataLoader(ScanObjectNN(DATA_PATH, partition='test', num_points=args.num_points), num_workers=8,
batch_size=args.test_batch_size, shuffle=False, drop_last=False)
else:
raise NotImplementedError
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# model loading
model = PointConT_cls(args).cuda()
# model = nn.DataParallel(model)
checkpoint = torch.load('model.pth')
model.load_state_dict(checkpoint['model_state_dict'])
logger.info('Start Testing ... ')
model = model.eval()
test_acc = 0.0
test_true = []
test_pred = []
for data, label in tqdm(test_loader):
data, label = data.cuda(), label.cuda().squeeze()
batch_size = data.size()[0]
logits = model(data)
preds = logits.max(dim=1)[1]
test_true.append(label.cpu().numpy())
test_pred.append(preds.detach().cpu().numpy())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
test_acc = metrics.accuracy_score(test_true, test_pred)
test_acc_avg = metrics.balanced_accuracy_score(test_true, test_pred)
logger.info('test acc: %.6f'%(test_acc))
logger.info('test avg acc: %.6f'%(test_acc_avg))
if args.flops_profiler:
input = [torch.randn_like(data)]
flops, macs, params = profile_model(model, input)
logger.info(f'GFLOPs\tGMACs\tParams.(M)')
logger.info(f'{flops/(float(batch_size)*1e9): .2f}\t{macs/(float(batch_size)*1e9): .2f}\t{params/1e6: .3f}')
@hydra.main(config_path='config', config_name='cls')
def main(args):
if args.seed is None:
args.seed = np.random.randint(1, 10000)
_init_(args.seed)
if not args.eval:
Wandb.launch(args, args.wandb.use_wandb)
train(args)
else:
with torch.no_grad():
test(args)
if __name__ == "__main__":
main()