Skip to content

xyonix/autoencoder-modeling-blog

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

autoencoder-imputation-xyonix-blog

Exploring the Power of Autoencoders for Data Imputation.

installation

# 1. Create a conda environment with Python 3.10
conda create -n xyonix_autoencoder python=3.10

# 2. Activate the environment
conda activate xyonix_autoencoder

# 3. Install essential Python packages via conda
conda install -c conda-forge jupyter ipykernel numpy pandas joblib scikit-learn matplotlib seaborn

#    Note: The `-c conda-forge` ensures we get up-to-date packages from the conda-forge channel.

# 4. Install TensorFlow
#    - On most Linux/Windows with Python 3.10:
pip install tensorflow

#    - On M1/M2 Macs (Apple Silicon), install these instead:
# pip install tensorflow-macos tensorflow-metal

# 5. Register the environment’s kernel with Jupyter
python -m ipykernel install --user --name xyonix_autoencoder

# 6. Launch Jupyter Notebook
jupyter notebook

Once the Jupyter notebook navigator loads:

  1. Select autoencoder_imputation.ipynb to open notebook
  2. Select Kernel >> Change kernel >> xyonix_autoencoder from pull-down menu

notebook

The Jupyter Notebook corresponds to the XYONIX article, Filling the Gaps: AI-Powered Data Imputation with Autoencoders on Housing Data. Run the cells in the notebook in order to reproduce the plots shown in the article.

About

Autoencoder modeling

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published