-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
153 lines (125 loc) · 5.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import argparse
import time
import numpy as np
import utils
from config import update_epochs_normalization
from algorithms.slad import SLAD
dataset_root = './'
parser = argparse.ArgumentParser()
parser.add_argument("--runs", type=int, default=5,
help="how many times we repeat the experiments to obtain the average performance")
parser.add_argument("--input_dir", type=str,
default='data',
help="the path of the data sets")
parser.add_argument("--output_dir", type=str,
default='&record/',
help="the output file path")
parser.add_argument("--dataset", type=str,
default='*thyroid,*arrhy*,*waveform',
help="FULL represents all the csv file in the folder, or a list of data set names split by comma")
parser.add_argument("--model", type=str, default='slad', help="",)
parser.add_argument("--normalization", type=str, default='min-max', help="",)
parser.add_argument('--contamination', type=float, default=-1)
parser.add_argument('--silent_header', action='store_true')
parser.add_argument("--flag", type=str, default='')
parser.add_argument("--note", type=str, default='')
# model parameters
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--rep_dim', type=int, default=128)
parser.add_argument('--hidden_dims', type=str, default='100')
parser.add_argument('--d_size', type=int, default=10)
parser.add_argument('--n_ensemble', type=int, default=20)
parser.add_argument('--pool_size', type=int, default=50)
parser.add_argument('--mag_factor', type=int, default=200)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
data_lst = utils.get_data_lst(os.path.join(dataset_root, args.input_dir), args.dataset)
print(os.path.join(dataset_root, args.input_dir))
print(data_lst)
model_class = SLAD
model_configs = {
'epochs': args.epochs,
'lr': args.lr,
'distribution_size': args.d_size,
'n_ensemble': args.n_ensemble,
'hidden_dims': args.hidden_dims,
'subspace_pool_size': args.pool_size,
'n_unified_features': args.rep_dim,
'magnify_factor': args.mag_factor
}
print('model configs:', model_configs)
cur_time = time.strftime("%m-%d %H.%M.%S", time.localtime())
result_file = os.path.join(args.output_dir, f'{args.model}.{args.input_dir}.{args.flag}.csv')
raw_res_file = None
if not args.silent_header:
f = open(result_file, 'a')
print('\n---------------------------------------------------------', file=f)
print(f'model: {args.model}, data dir: {args.input_dir}, '
f'dataset: {args.dataset}, contamination: {args.contamination}, {args.runs}runs, ', file=f)
print(f'{args.normalization}', file=f)
for k in model_configs.keys():
print(f'Parameters,\t [{k}], \t\t {model_configs[k]}', file=f)
print(f'Note: {args.note}', file=f)
print('---------------------------------------------------------', file=f)
print('data, auc-roc, std, auc-pr, std, f1, std, time', file=f)
f.close()
avg_auc_lst, avg_ap_lst, avg_f1_lst = [], [], []
for file in data_lst:
dataset_name = os.path.splitext(os.path.split(file)[1])[0]
print(f'\n-------------------------{dataset_name}-----------------------')
# modify the normalization/epoch according to different datasets
model_configs, normalization = update_epochs_normalization(args.model, dataset_name,
model_configs, args.normalization)
print(f'normalization: {normalization}')
x_train, y_train, x_test, y_test = utils.read_data(file=file,
normalization=normalization,
seed=42)
if x_train is None:
continue
# # # Experiment: robustness w.r.t. different anomaly contamination rate
if args.contamination != -1:
x_train_, y_train_, x_test_, y_test_ = utils.adjust_contamination(
x_train, y_train, x_test, y_test,
contamination_r=args.contamination,
swap_ratio=0.05,
random_state=42
)
else:
x_train_, y_train_, x_test_, y_test_ = x_train, y_train, x_test, y_test
auc_lst, ap_lst, f1_lst = np.zeros(args.runs), np.zeros(args.runs), np.zeros(args.runs)
t1_lst, t2_lst = np.zeros(args.runs), np.zeros(args.runs)
for i in range(args.runs):
start_time = time.time()
print(f'\nRunning [{i+1}/{args.runs}] of [{args.model}] on Dataset [{dataset_name}]')
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
clf = model_class(**model_configs, random_state=42+i)
clf.fit(x_train_)
ckpt_time = time.time()
scores = clf.decision_function(x_test_)
done_time = time.time()
auc, ap, f1 = utils.evaluate(y_test_, scores)
auc_lst[i], ap_lst[i], f1_lst[i] = auc, ap, f1
t1_lst[i] = ckpt_time - start_time
t2_lst[i] = done_time - start_time
print(f'{dataset_name}, {auc_lst[i]:.4f}, {ap_lst[i]:.4f}, {f1_lst[i]:.4f} '
f'{t1_lst[i]:.1f}/{t2_lst[i]:.1f}, {model_configs}')
avg_auc, avg_ap, avg_f1 = np.average(auc_lst), np.average(ap_lst), np.average(f1_lst)
std_auc, std_ap, std_f1 = np.std(auc_lst), np.std(ap_lst), np.std(f1_lst)
avg_time1 = np.average(t1_lst)
avg_time2 = np.average(t2_lst)
f = open(result_file, 'a')
txt = f'{dataset_name}, ' \
f'{avg_auc:.4f}, {std_auc:.4f}, ' \
f'{avg_ap:.4f}, {std_ap:.4f}, ' \
f'{avg_f1:.4f}, {std_f1:.4f}, ' \
f'{avg_time1:.1f}/{avg_time2:.1f}, ' \
f'norm, {normalization}, ' \
f'{model_configs}'
print(txt, file=f)
print(txt)
f.close()
avg_auc_lst.append(avg_auc)
avg_ap_lst.append(avg_ap)
avg_f1_lst.append(avg_f1)