This respository includes scripts and jupyter notebooks used to re-generate analysis results of "A single-parasite transcriptional atlas of Toxoplasma gondii reveals novel control of antigen expression" (2020).
We have also generated an interactive browser to visualize our scRNA-seq dataset. Visit here
Git clone this repository:
git clone https://github.com/xuesoso/singleToxoplasmaSeq
Then download the bundled scripts and data to the repository folder in order to regenerate analysis results and figures.
Decompress the files
tar -xvf Submission_analysis.tar.gz
Optional: Assuming that one has anaconda distribution of python, create an environment for python 3.6.8 (should work on python 3.6+).
conda create -n toxoSeq python=3.6.8 ipykernel
conda activate toxoSeq
Optional: If you just set up a new conda environment, you may need to set up the jupyter kernel as well in order for jupyter notebook to run on this backend.
python -m ipykernel install --user
Now, install all the required python libraries.
pip install -r requirements.txt
Lastly, you can now open up the jupyter notebook and run each cell to regenerate the analysis results.
jupyter-notebook Scripts/figures.ipynb
Data description: See "data_description.csv" for a description of the data files in Submission_analysis/Data/
What is in "Scripts/"
--Scripts ----> figures.ipynb : Jupyter notebook to regenerate figures and analysis results.
|
|-------> _loadlib ---> utils/ : A list of utility plotting and analysis functions required. Imported library call name is "sat"
| |
| |-------> rh07.py : Library and variable definitions for RH (rh07; 384-well) dataset analysis.
| |
| |-------> me49_011.py : Library and variable definitions for ME49 (me49_011) dataset analysis.
| |
| |-------> pru0506.py : Library and variable definitions for Pru (pru0506) dataset analysis.
| |
|------> _preprocess -> rh07.py : Preprocessing parameter and plots for RH (rh07; 384-well) dataset analysis.
| |
| |-------> rh019.py : Preprocessing parameter and plots for RH (rh019; 96-well) dataset analysis.
| |
| |-------> me49_011.py : Preprocessing parameter and plots for ME49 (me49_011) dataset analysis.
| |
| |-------> pru0506.py : Preprocessing parameter and plots for Pru (pru0506) dataset analysis.
| |
| |-------> readme.txt : A textfile with descriptions for each of the dataset.
|
|------> analysis_scripts -> cluster_dependence.py : Script to analyze and identify genes with poor co-variation to the underlying embedding.
|
|----------> align_pru_me49.py : Script to integrate and align ME49 (me49_011) and Pru (pru0506) datasets using Scanorama (Hie, B., Bryson, B. & Berger, B. Nat Biotechnol (2019))
|
|----------> Bradley_GRAs.csv : A comma-separated list of identified GRA genes.