-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
executable file
·371 lines (319 loc) · 14.5 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# -*- encoding: utf-8 -*-
'''
@Time : 2022/06/10 15:51:44
@Author : Chu Xiaokai
@Contact : xiaokaichu@gmail.com
'''
import math
import paddle
import paddle.nn.functional as F
import os
import random
from paddle.io import Dataset, IterableDataset
import gzip
from functools import reduce
from args import config
import numpy as np
# --------------- data process for masked language modeling (MLM) ---------------- #
def prob_mask_like(t, prob):
return paddle.to_tensor(paddle.zeros_like(t), dtype=paddle.float32).uniform_(0, 1) < prob
def mask_with_tokens(t, token_ids):
init_no_mask = paddle.full_like(t, False, dtype=paddle.bool)
mask = reduce(lambda acc, el: acc | (t == el), token_ids, init_no_mask)
return mask
def masked_fill(x, mask, value):
y = paddle.full(x.shape, value, x.dtype)
return paddle.where(mask, y, x)
def get_mask_subset_with_prob(mask, prob):
# todo: mask.shape 是否可以解包?
batch, seq_len = mask.shape
max_masked = math.ceil(prob * seq_len)
num_tokens = paddle.sum(mask, axis=-1, keepdim=True)
# to check
mask_excess = (paddle.cumsum(paddle.to_tensor(mask, dtype="int32"), axis=-1) > (num_tokens * prob).ceil())
mask_excess = mask_excess[:, :max_masked]
rand = masked_fill(paddle.rand((batch, seq_len)), mask, -1e9)
_, sampled_indices = rand.topk(max_masked, axis=-1)
sampled_indices = masked_fill(sampled_indices + 1, mask_excess, 0)
new_mask = paddle.zeros((batch, seq_len + 1))
rows = paddle.reshape(paddle.to_tensor(np.array([[i] * max_masked for i in range(batch)]),
dtype=paddle.int64), (-1,))
cols = paddle.reshape(sampled_indices, (-1,))
new_mask[rows, cols] = 1
return paddle.to_tensor(new_mask[:, 1:], dtype=paddle.bool)
def mask_data(seq, mask_ignore_token_ids=[config._CLS_, config._SEP_, config._PAD_],
mask_token_id=config._MASK_,
mask_prob=0.1,
pad_token_id=config._PAD_,
replace_prob=1.0
):
no_mask = mask_with_tokens(seq, mask_ignore_token_ids)
mask = get_mask_subset_with_prob(~no_mask, mask_prob)
masked_seq = seq.clone()
labels = masked_fill(seq, mask, pad_token_id)
# seq.masked_fill(~mask, pad_token_id) # use pad to fill labels
replace_prob = prob_mask_like(seq, replace_prob)
mask = mask * replace_prob
masked_seq = masked_fill(masked_seq, mask, mask_token_id)
return masked_seq, labels
# ---------------------- DataLoader ----------------------- #
def process_data(query, title, content, max_seq_len):
""" process [query, title, content] into a tensor
[CLS] + query + [SEP] + title + [SEP] + content + [SEP] + [PAD]
"""
data = [config._CLS_]
segment = [0]
data = data + [int(item) + 10 for item in query.split(b'\x01')] # query
data = data + [config._SEP_]
segment = segment + [0] * (len(query.split(b'\x01')) + 1)
data = data + [int(item) + 10 for item in title.split(b'\x01')] # content
data = data + [config._SEP_] # sep defined as 1
segment = segment + [1] * (len(title.split(b'\x01')) + 1)
data = data + [int(item) + 10 for item in content.split(b'\x01')] # content
data = data + [config._SEP_]
segment = segment + [1] * (len(content.split(b'\x01')) + 1)
# padding
padding_mask = [False] * len(data)
if len(data) < max_seq_len:
padding_mask += [True] * (max_seq_len - len(data))
data += [config._PAD_] * (max_seq_len - len(data))
else:
padding_mask = padding_mask[:max_seq_len]
data = data[:max_seq_len]
# segment id
if len(segment) < max_seq_len:
segment += [1] * (max_seq_len - len(segment))
else:
segment = segment[:max_seq_len]
padding_mask = paddle.to_tensor(padding_mask, dtype='int32')
data = paddle.to_tensor(data, dtype="int32")
segment = paddle.to_tensor(segment, dtype="int32")
return data, segment, padding_mask
def process_data_bi(content, max_seq_len):
""" process [content] into a tensor
[CLS] + content + [SEP] + [PAD]
"""
data = [config._CLS_]
segment = [0]
data = data + [int(item) + 10 for item in content.split(b'\x01')] # query
data = data + [config._SEP_]
segment = segment + [0] * (len(content.split(b'\x01')) + 1)
# padding
padding_mask = [False] * len(data)
if len(data) < max_seq_len:
padding_mask += [True] * (max_seq_len - len(data))
data += [config._PAD_] * (max_seq_len - len(data))
else:
padding_mask = padding_mask[:max_seq_len]
data = data[:max_seq_len]
# segment id
if len(segment) < max_seq_len:
segment += [1] * (max_seq_len - len(segment))
else:
segment = segment[:max_seq_len]
padding_mask = paddle.to_tensor(padding_mask, dtype='int32')
data = paddle.to_tensor(data, dtype="int32")
segment = paddle.to_tensor(segment, dtype="int32")
return data, segment, padding_mask
class TrainDataset(IterableDataset):
def __init__(self, directory_path, buffer_size=100000, max_seq_len=128):
super().__init__()
self.directory_path = directory_path
self.buffer_size = buffer_size
self.files = os.listdir(self.directory_path)
random.shuffle(self.files)
self.cur_query = "#"
self.max_seq_len = max_seq_len
def __iter__(self):
buffer = []
for file in self.files:
# if not file.startswith('part-all'): # part-00000.gz is for evaluation
# continue
print('load file', file)
with gzip.open(os.path.join(self.directory_path, file), 'rb') as f:
# with open(os.path.join(self.directory_path, file), 'rb') as f:
for line in f.readlines():
line_list = line.strip(b'\n').split(b'\t')
if len(line_list) == 3: # new query
self.cur_query = line_list[1]
elif len(line_list) > 6: # urls
position, title, content, click_label = line_list[0], line_list[2], line_list[3], line_list[5]
try:
src_input, segment, src_padding_mask = process_data(self.cur_query, title, content,
self.max_seq_len)
buffer.append([src_input, segment, src_padding_mask, float(click_label)])
except:
pass
if len(buffer) >= self.buffer_size:
random.shuffle(buffer)
for record in buffer:
yield record
class TestDataset(Dataset):
def __init__(self, fpath, max_seq_len, data_type, buffer_size=300000):
super().__init__()
self.max_seq_len = max_seq_len
self.buffer_size = buffer_size
if data_type == 'annotate':
self.buffer, self.total_qids, self.total_labels, self.total_freqs = self.load_annotate_data(fpath)
elif data_type == 'annotate-bi':
self.buffer, self.total_qids, self.total_labels, self.total_freqs = self.load_annotate_data_bi(fpath)
elif data_type == 'finetune':
self.buffer, self.total_qids, self.total_labels, self.total_freqs = self.load_annotate_data(fpath, shuffle=True, binary_label=True)
elif data_type == 'finetune-bi':
self.buffer, self.total_qids, self.total_labels, self.total_freqs = self.load_annotate_data_bi(fpath, shuffle=True, binary_label=True)
elif data_type == 'finetune-pairwise':
self.buffer, self.total_qids, self.total_labels, self.total_freqs = self.load_annotate_data_pairwise(fpath, shuffle=True)
elif data_type == 'click':
self.buffer, self.total_qids, self.total_labels = self.load_click_data(fpath)
def __len__(self):
return len(self.buffer)
def __getitem__(self, index):
return self.buffer[index]
def load_annotate_data_pairwise(self, fpath, shuffle=False, binary_label=False):
print('load annotated data from ', fpath)
total_qids = []
buffer = []
total_labels = []
total_freqs = []
tmp_buffer = []
q2idx = {}
# tmp buffer
buffer_idx = 0
for line in open(fpath, 'rb'):
line_list = line.strip(b'\n').split(b'\t')
qid, query, title, content, label, freq = line_list
q_str = query.decode()
if q_str not in q2idx:
q2idx[q_str] = {'0': [], '1': [], '2': [], '3': [], '4': []}
total_qids.append(int(qid))
total_labels.append(int(label))
total_freqs.append(freq)
src_input, src_segment, src_padding_mask = process_data(query, title, content, self.max_seq_len)
tmp_buffer.append([q_str, src_input, src_segment, src_padding_mask, int(label)])
q2idx[q_str][label.decode()].append(buffer_idx)
buffer_idx += 1
# generate pairwise data, 1 pos + 15 neg
for idx, line in enumerate(tmp_buffer):
q_str, input, segment, padding_mask, label = line[0], line[1], line[2], line[3], line[4]
if label == 4:
# neg_list = q2idx[q_str]['3'] + q2idx[q_str]['2'] + q2idx[q_str]['1'] + q2idx[q_str]['0']
neg_list = q2idx[q_str]['1'] + q2idx[q_str]['0']
elif label == 3:
neg_list = q2idx[q_str]['1'] + q2idx[q_str]['0']
elif label == 2:
neg_list = q2idx[q_str]['1'] + q2idx[q_str]['0']
# else:
# neg_list = []
# elif label == 1:
# neg_list = q2idx[q_str]['0']
else:
neg_list = []
neg_len = len(neg_list)
neg_idxs = random.sample(neg_list, min(neg_len, 15))
# ?这里感觉还是应该研究一下
for neg_idx in neg_idxs:
this_input, this_segment, this_padding_mask = tmp_buffer[neg_idx][1], tmp_buffer[neg_idx][2], tmp_buffer[neg_idx][3]
buffer.append([[input, this_input], [segment, this_segment], [padding_mask, this_padding_mask]])
if shuffle:
np.random.shuffle(buffer)
return buffer, total_qids, total_labels, total_freqs
def load_annotate_data_bi(self, fpath, shuffle=False, binary_label=False):
print('load annotated data from ', fpath)
total_qids = []
buffer = []
total_labels = []
total_freqs = []
for line in open(fpath, 'rb'):
line_list = line.strip(b'\n').split(b'\t')
qid, query, title, content, label, freq = line_list
if binary_label:
if int(label) >= 2:
label = "1"
else:
label = "0"
if 0 <= int(freq) <= 2: # high freq
freq = 0
elif 3 <= int(freq) <= 6: # mid freq
freq = 1
elif 7 <= int(freq): # tail
freq = 2
total_qids.append(int(qid))
total_labels.append(int(label))
total_freqs.append(freq)
doc = title + b'\x01' + content
src_q_input, src_q_segment, src_q_padding_mask = process_data_bi(query, max_seq_len=20)
src_d_input, src_d_segment, src_d_padding_mask = process_data_bi(doc, max_seq_len=128)
buffer.append([src_q_input, src_q_segment, src_q_padding_mask, src_d_input, src_d_segment, src_d_padding_mask, label])
if shuffle:
np.random.shuffle(buffer)
return buffer, total_qids, total_labels, total_freqs
def load_annotate_data(self, fpath, shuffle=False, binary_label=False):
print('load annotated data from ', fpath)
total_qids = []
buffer = []
total_labels = []
total_freqs = []
for line in open(fpath, 'rb'):
line_list = line.strip(b'\n').split(b'\t')
qid, query, title, content, label, freq = line_list
if binary_label:
if int(label) >= 2:
label = "1"
else:
label = "0"
if 0 <= int(freq) <= 2: # high freq
freq = 0
elif 3 <= int(freq) <= 6: # mid freq
freq = 1
elif 7 <= int(freq): # tail
freq = 2
total_qids.append(int(qid))
total_labels.append(int(label))
total_freqs.append(freq)
src_input, src_segment, src_padding_mask = process_data(query, title, content, self.max_seq_len)
buffer.append([src_input, src_segment, src_padding_mask, label])
if shuffle:
np.random.shuffle(buffer)
return buffer, total_qids, total_labels, total_freqs
def load_click_data(self, fpath):
print('load logged click data from ', fpath)
with gzip.open(fpath, 'rb') as f:
buffer = []
total_qids = []
total_labels = []
cur_qids = 0
for line in f.readlines():
line_list = line.strip(b'\n').split(b'\t')
if len(line_list) == 3: # new query
self.cur_query = line_list[1]
cur_qids += 1
elif len(line_list) > 6: # urls
position, title, content, click_label = line_list[0], line_list[2], line_list[3], line_list[5]
try:
src_input, src_segment, src_padding_mask = process_data(self.cur_query, title, content,
self.max_seq_len)
buffer.append([src_input, src_segment, src_padding_mask])
total_qids.append(cur_qids)
total_labels.append(int(click_label))
except:
pass
if len(buffer) >= self.buffer_size: # we use 300,000 click records for test
break
return buffer, total_qids, total_labels
def build_feed_dict(data_batch):
if len(data_batch) == 4: # for training
src, src_segment, src_padding_mask, click_label = data_batch
elif len(data_batch) == 3: # for validation
src, src_segment, src_padding_mask = data_batch
else:
raise KeyError
feed_dict = {
'src': src,
'src_segment': src_segment,
'src_padding_mask': src_padding_mask,
}
if len(data_batch) == 4:
click_label = click_label.numpy().reshape(-1, 10).T
for i in range(10):
feed_dict['label' + str(i)] = click_label[i]
return feed_dict