-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
97 lines (81 loc) · 3.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import logging
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from networks.LaplacianFormer import LaplacianFormer
from trainer import trainer_synapse
import warnings
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser()
parser.add_argument('--root_path', type=str,
default='/images/PublicDataset/Transunet_synaps/project_TransUNet/data/Synapse/train_npz', help='root dir for data')
parser.add_argument('--test_path', type=str,
default='/images/PublicDataset/Transunet_synaps/project_TransUNet/data/Synapse/test_vol_h5', help='root dir for data')
parser.add_argument('--dataset', type=str,
default='Synapse', help='experiment_name')
parser.add_argument('--list_dir', type=str,
default='./lists/lists_Synapse', help='list dir')
parser.add_argument('--dst_fast', action='store_true',
help='SynapseDatasetFast: will load all data into RAM')
parser.add_argument('--num_classes', type=int,
default=9, help='output channel of network')
parser.add_argument('--n_skip_bridge', type=int,
default=1, help='Number of skip connections (repeat the skip connection $n$ times)')
parser.add_argument('--pyramid_levels', type=int,
default=4, help='Number of pyramid levels')
parser.add_argument('--model_path', type=str,
default='./model_out/best_model.pth', help='model path')
parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
parser.add_argument('--output_dir', type=str,
default='./model_out',help='output dir')
parser.add_argument('--max_iterations', type=int,
default=90000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int,
default=400, help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int,
default=32, help='batch_size per gpu')
parser.add_argument('--num_workers', type=int,
default=4, help='num_workers')
parser.add_argument('--eval_interval', type=int,
default=20, help='eval_interval')
parser.add_argument('--model_name', type=str,
default='laplacian', help='model_name')
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.05,
help='segmentation network learning rate')
parser.add_argument('--img_size', type=int,
default=224, help='input patch size of network input')
parser.add_argument('--z_spacing', type=int,
default=1, help='z_spacing')
parser.add_argument('--seed', type=int,
default=1234, help='random seed')
args = parser.parse_args()
args.output_dir = args.output_dir + f'/{args.model_name}'
os.makedirs(args.output_dir, exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if __name__ == "__main__":
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
if not args.deterministic:
cudnn.benchmark = True
cudnn.deterministic = False
else:
cudnn.benchmark = False
cudnn.deterministic = True
# random.seed(args.seed)
# np.random.seed(args.seed)
# torch.manual_seed(args.seed)
# torch.cuda.manual_seed(args.seed)
dataset_name = args.dataset
if args.batch_size != 24 and args.batch_size % 5 == 0:
args.base_lr *= args.batch_size / 24
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
net = LaplacianFormer(num_classes=args.num_classes, n_skip_bridge=args.n_skip_bridge,
pyramid_levels=args.pyramid_levels).to(device)
trainer = {'Synapse': trainer_synapse,}
trainer[dataset_name](args, net, args.output_dir)