-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_stars.py
306 lines (249 loc) · 16 KB
/
create_stars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# -*- coding: utf-8 -*-
"""
Energy Based Generative Adversarial Networks (EBGAN): https://arxiv.org/pdf/1609.03126v2.pdf
<blog.topspeedsnail.com>
由于我把Python升级到了3.6破坏了开发环境, 暂时先使用Python 2.7
"""
import os
import random
import numpy as np
import tensorflow as tf
from PIL import Image
# import cv2
import scipy.misc as misc
CELEBA_DATE_DIR = '/Users/maxiong/Workpace/DS/img_align_celeba'
# 定义训练列表,并将所有数据集中的照片名字加入到列表中
train_images = []
for image_filename in os.listdir(CELEBA_DATE_DIR):
if image_filename.endswith('.jpg'):
train_images.append(os.path.join(CELEBA_DATE_DIR, image_filename))
# 将原来列表中的数据进行重新排序
random.shuffle(train_images)
# 定义batch size
batch_size = 64
# 有多少个batch
num_batch = len(train_images) // batch_size
# 图像大小和channel
IMAGE_SIZE = 64
IMAGE_CHANNEL = 3
# 获得下一个batch数据,数据类型为numpy
def get_next_batch(pointer):
image_batch = []
# 找出在训练集中上一个指针到下一个指针之间数据,这里用到了列表中的[start_Index:end_Indexs],类似substring的用法
images = train_images[pointer * batch_size:(pointer + 1) * batch_size]
for img in images:
arr = Image.open(img)
# 将图片转换成64*64
arr = arr.resize((IMAGE_SIZE, IMAGE_SIZE))
# 将列表转换为numpy数组
arr = np.array(arr)
# 将里面的数据类型转换为float32的,并将里面的数据进行标转化过
arr = arr.astype('float32') / 127.5 - 1
image_batch.append(arr)
return image_batch
# noise
z_dim = 100
noise = tf.placeholder(tf.float32, [None, z_dim], name='noise')
# 生成x的占位符,shape形状为:多少张图片 图片宽度 图片高度 图片通道数(因为这里是RGB的图像,所有这里图像的通道数为:3)
X = tf.placeholder(tf.float32, [batch_size, IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL], name='X')
# 是否在训练阶段
train_phase = tf.placeholder(tf.bool)
# http://stackoverflow.com/a/34634291/2267819
# 数据归一化
def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5):
with tf.variable_scope(scope):
# beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
# gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
# 计算x的均值和方差 axis表示纬度:0表示x的0维,依次这样。
# 方差含义:是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
# 我的理解是正则化L2衰减率,按这个进行衰减,这里衰减一次
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
# 开始进行衰减,这里传递的参数是需要衰减的tensor
ema_apply_op = ema.apply([batch_mean, batch_var])
# 因为开始进行了衰减,这里在tf.control_dependencies的作用下,返回经过作用的tensor
# http://blog.csdn.net/GAN_player/article/details/77511625
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
# 相当于if中的判断语句,如果大于就返回前面的,如果不是就返回后面的,这里的意思是:如果开始训练,就返回batch平均,如果不是,则说明在生成图片
# 就返回差别的平均
mean, var = tf.cond(phase_train, mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
return normed
# 重用变量出了点问题, 先用dict
generator_variables_dict = {
# 返回一个标准分布的权值矩阵,有两个生成网络,一个用数据生成噪声,一个用噪声生成数据。
"W_1": tf.Variable(tf.truncated_normal([z_dim, 2 * IMAGE_SIZE * IMAGE_SIZE], stddev=0.02), name='Generator/W_1'),
"b_1": tf.Variable(tf.constant(0.0, shape=[2 * IMAGE_SIZE * IMAGE_SIZE]), name='Generator/b_1'),
'beta_1': tf.Variable(tf.constant(0.0, shape=[512]), name='Generator/beta_1'),
'gamma_1': tf.Variable(tf.random_normal(shape=[512], mean=1.0, stddev=0.02), name='Generator/gamma_1'),
"W_2": tf.Variable(tf.truncated_normal([5, 5, 256, 512], stddev=0.02), name='Generator/W_2'),
"b_2": tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/b_2'),
'beta_2': tf.Variable(tf.constant(0.0, shape=[256]), name='Generator/beta_2'),
'gamma_2': tf.Variable(tf.random_normal(shape=[256], mean=1.0, stddev=0.02), name='Generator/gamma_2'),
"W_3": tf.Variable(tf.truncated_normal([5, 5, 128, 256], stddev=0.02), name='Generator/W_3'),
"b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/b_3'),
'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Generator/beta_3'),
'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Generator/gamma_3'),
"W_4": tf.Variable(tf.truncated_normal([5, 5, 64, 128], stddev=0.02), name='Generator/W_4'),
"b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/b_4'),
'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Generator/beta_4'),
'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Generator/gamma_4'),
"W_5": tf.Variable(tf.truncated_normal([5, 5, IMAGE_CHANNEL, 64], stddev=0.02), name='Generator/W_5'),
"b_5": tf.Variable(tf.constant(0.0, shape=[IMAGE_CHANNEL]), name='Generator/b_5')
}
# Generator
def generator(noise):
with tf.variable_scope("Generator"):
out_1 = tf.matmul(noise, generator_variables_dict["W_1"]) + generator_variables_dict['b_1']
out_1 = tf.reshape(out_1, [-1, IMAGE_SIZE // 16, IMAGE_SIZE // 16, 512])
# 数据归一化
out_1 = batch_norm(out_1, generator_variables_dict["beta_1"], generator_variables_dict["gamma_1"], train_phase,
scope='bn_1')
out_1 = tf.nn.relu(out_1, name='relu_1')
# tf.nn.conv2d_transpose表示解卷积,以给定的W_2权值解卷积
out_2 = tf.nn.conv2d_transpose(out_1, generator_variables_dict['W_2'], output_shape=tf.stack(
[tf.shape(out_1)[0], IMAGE_SIZE // 8, IMAGE_SIZE // 8, 256]), strides=[1, 2, 2, 1], padding='SAME')
out_2 = tf.nn.bias_add(out_2, generator_variables_dict['b_2'])
out_2 = batch_norm(out_2, generator_variables_dict["beta_2"], generator_variables_dict["gamma_2"], train_phase,
scope='bn_2')
out_2 = tf.nn.relu(out_2, name='relu_2')
out_3 = tf.nn.conv2d_transpose(out_2, generator_variables_dict['W_3'], output_shape=tf.stack(
[tf.shape(out_2)[0], IMAGE_SIZE // 4, IMAGE_SIZE // 4, 128]), strides=[1, 2, 2, 1], padding='SAME')
out_3 = tf.nn.bias_add(out_3, generator_variables_dict['b_3'])
out_3 = batch_norm(out_3, generator_variables_dict["beta_3"], generator_variables_dict["gamma_3"], train_phase,
scope='bn_3')
out_3 = tf.nn.relu(out_3, name='relu_3')
out_4 = tf.nn.conv2d_transpose(out_3, generator_variables_dict['W_4'],
output_shape=tf.stack([tf.shape(out_3)[0], IMAGE_SIZE // 2, IMAGE_SIZE // 2, 64]),
strides=[1, 2, 2, 1], padding='SAME')
out_4 = tf.nn.bias_add(out_4, generator_variables_dict['b_4'])
out_4 = batch_norm(out_4, generator_variables_dict["beta_4"], generator_variables_dict["gamma_4"], train_phase,
scope='bn_4')
out_4 = tf.nn.relu(out_4, name='relu_4')
out_5 = tf.nn.conv2d_transpose(out_4, generator_variables_dict['W_5'], output_shape=tf.stack(
[tf.shape(out_4)[0], IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNEL]), strides=[1, 2, 2, 1], padding='SAME')
out_5 = tf.nn.bias_add(out_5, generator_variables_dict['b_5'])
out_5 = tf.nn.tanh(out_5, name='tanh_5')
return out_5
discriminator_variables_dict = {
"W_1": tf.Variable(tf.truncated_normal([4, 4, IMAGE_CHANNEL, 32], stddev=0.002), name='Discriminator/W_1'),
"b_1": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_1'),
'beta_1': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_1'),
'gamma_1': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_1'),
"W_2": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_2'),
"b_2": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_2'),
'beta_2': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_2'),
'gamma_2': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_2'),
"W_3": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_3'),
"b_3": tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/b_3'),
'beta_3': tf.Variable(tf.constant(0.0, shape=[128]), name='Discriminator/beta_3'),
'gamma_3': tf.Variable(tf.random_normal(shape=[128], mean=1.0, stddev=0.02), name='Discriminator/gamma_3'),
"W_4": tf.Variable(tf.truncated_normal([4, 4, 64, 128], stddev=0.002), name='Discriminator/W_4'),
"b_4": tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/b_4'),
'beta_4': tf.Variable(tf.constant(0.0, shape=[64]), name='Discriminator/beta_4'),
'gamma_4': tf.Variable(tf.random_normal(shape=[64], mean=1.0, stddev=0.02), name='Discriminator/gamma_4'),
"W_5": tf.Variable(tf.truncated_normal([4, 4, 32, 64], stddev=0.002), name='Discriminator/W_5'),
"b_5": tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/b_5'),
'beta_5': tf.Variable(tf.constant(0.0, shape=[32]), name='Discriminator/beta_5'),
'gamma_5': tf.Variable(tf.random_normal(shape=[32], mean=1.0, stddev=0.02), name='Discriminator/gamma_5'),
"W_6": tf.Variable(tf.truncated_normal([4, 4, 3, 32], stddev=0.002), name='Discriminator/W_6'),
"b_6": tf.Variable(tf.constant(0.0, shape=[3]), name='Discriminator/b_6')
}
# Discriminator
def discriminator(input_images):
with tf.variable_scope("Discriminator"):
# Encoder
out_1 = tf.nn.conv2d(input_images, discriminator_variables_dict['W_1'], strides=[1, 2, 2, 1], padding='SAME')
out_1 = tf.nn.bias_add(out_1, discriminator_variables_dict['b_1'])
out_1 = batch_norm(out_1, discriminator_variables_dict['beta_1'], discriminator_variables_dict['gamma_1'],
train_phase, scope='bn_1')
out_1 = tf.maximum(0.2 * out_1, out_1, 'leaky_relu_1')
out_2 = tf.nn.conv2d(out_1, discriminator_variables_dict['W_2'], strides=[1, 2, 2, 1], padding='SAME')
out_2 = tf.nn.bias_add(out_2, discriminator_variables_dict['b_2'])
out_2 = batch_norm(out_2, discriminator_variables_dict['beta_2'], discriminator_variables_dict['gamma_2'],
train_phase, scope='bn_2')
out_2 = tf.maximum(0.2 * out_2, out_2, 'leaky_relu_2')
out_3 = tf.nn.conv2d(out_2, discriminator_variables_dict['W_3'], strides=[1, 2, 2, 1], padding='SAME')
out_3 = tf.nn.bias_add(out_3, discriminator_variables_dict['b_3'])
out_3 = batch_norm(out_3, discriminator_variables_dict['beta_3'], discriminator_variables_dict['gamma_3'],
train_phase, scope='bn_3')
out_3 = tf.maximum(0.2 * out_3, out_3, 'leaky_relu_3')
encode = tf.reshape(out_3, [-1, 2 * IMAGE_SIZE * IMAGE_SIZE])
# Decoder
out_3 = tf.reshape(encode, [-1, IMAGE_SIZE // 8, IMAGE_SIZE // 8, 128])
out_4 = tf.nn.conv2d_transpose(out_3, discriminator_variables_dict['W_4'],
output_shape=tf.stack([tf.shape(out_3)[0], IMAGE_SIZE // 4, IMAGE_SIZE // 4, 64]),
strides=[1, 2, 2, 1], padding='SAME')
out_4 = tf.nn.bias_add(out_4, discriminator_variables_dict['b_4'])
out_4 = batch_norm(out_4, discriminator_variables_dict['beta_4'], discriminator_variables_dict['gamma_4'],
train_phase, scope='bn_4')
out_4 = tf.maximum(0.2 * out_4, out_4, 'leaky_relu_4')
out_5 = tf.nn.conv2d_transpose(out_4, discriminator_variables_dict['W_5'],
output_shape=tf.stack([tf.shape(out_4)[0], IMAGE_SIZE // 2, IMAGE_SIZE // 2, 32]),
strides=[1, 2, 2, 1], padding='SAME')
out_5 = tf.nn.bias_add(out_5, discriminator_variables_dict['b_5'])
out_5 = batch_norm(out_5, discriminator_variables_dict['beta_5'], discriminator_variables_dict['gamma_5'],
train_phase, scope='bn_5')
out_5 = tf.maximum(0.2 * out_5, out_5, 'leaky_relu_5')
out_6 = tf.nn.conv2d_transpose(out_5, discriminator_variables_dict['W_6'],
output_shape=tf.stack([tf.shape(out_5)[0], IMAGE_SIZE, IMAGE_SIZE, 3]),
strides=[1, 2, 2, 1], padding='SAME')
out_6 = tf.nn.bias_add(out_6, discriminator_variables_dict['b_6'])
decoded = tf.nn.tanh(out_6, name="tanh_6")
return encode, decoded
# mean squared errors
_, real_decoded = discriminator(X)
real_loss = tf.sqrt(2 * tf.nn.l2_loss(real_decoded - X)) / batch_size
fake_image = generator(noise)
_, fake_decoded = discriminator(fake_image)
fake_loss = tf.sqrt(2 * tf.nn.l2_loss(fake_decoded - fake_image)) / batch_size
# loss
# D_loss = real_loss + tf.maximum(1 - fake_loss, 0)
margin = 20
D_loss = margin - fake_loss + real_loss
G_loss = fake_loss # no pt
def optimizer(loss, d_or_g):
optim = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.5)
# print([v.name for v in tf.trainable_variables() if v.name.startswith(d_or_g)])
var_list = [v for v in tf.trainable_variables() if v.name.startswith(d_or_g)]
gradient = optim.compute_gradients(loss, var_list=var_list)
return optim.apply_gradients(gradient)
train_op_G = optimizer(G_loss, 'Generator')
train_op_D = optimizer(D_loss, 'Discriminator')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer(), feed_dict={train_phase: True})
saver = tf.train.Saver()
# 恢复前一次训练
ckpt = tf.train.get_checkpoint_state('.')
if ckpt != None:
print(ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print("没找到模型")
step = 0
for i in range(40):
for j in range(num_batch):
batch_noise = np.random.uniform(-1.0, 1.0, size=[batch_size, z_dim]).astype(np.float32)
d_loss, _ = sess.run([D_loss, train_op_D],
feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
g_loss, _ = sess.run([G_loss, train_op_G],
feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
g_loss, _ = sess.run([G_loss, train_op_G],
feed_dict={noise: batch_noise, X: get_next_batch(j), train_phase: True})
print(step, d_loss, g_loss)
# 保存模型并生成图像
if step % 100 == 0:
saver.save(sess, "./model/celeba.model", global_step=step)
test_noise = np.random.uniform(-1.0, 1.0, size=(5, z_dim)).astype(np.float32)
images = sess.run(fake_image, feed_dict={noise: test_noise, train_phase: False})
for k in range(5):
image = images[k, :, :, :]
image += 1
image *= 127.5
image = np.clip(image, 0, 255).astype(np.uint8)
image = np.reshape(image, (IMAGE_SIZE, IMAGE_SIZE, -1))
misc.imsave('./image/fake_image' + str(step) + str(k) + '.jpg', image)
step += 1