forked from wenbowen123/iros20-6d-pose-tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_ycbineoat.py
128 lines (108 loc) · 4.52 KB
/
eval_ycbineoat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#
# Authors: Bowen Wen
# Contact: wenbowenxjtu@gmail.com
# Created in 2020
#
# Copyright (c) Rutgers University, 2020 All rights reserved.
#
# Wen, B., C. Mitash, B. Ren, and K. E. Bekris. "se (3)-TrackNet:
# Data-driven 6D Pose Tracking by Calibrating Image Residuals in
# Synthetic Domains." In IEEE/RSJ International Conference on Intelligent
# Robots and Systems (IROS). 2020.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the PRACSYS, Bowen Wen, Rutgers University,
# nor the names of its contributors may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import os,sys
code_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(code_dir+'/../')
import numpy as np
import glob
import scipy.io
import numpy as np
from Utils import *
from eval_ycb import VOCap
import argparse
def eval_all(args):
res_dir = args.res_dir
data_dir = '{}/'.format(args.YCBInEOAT_dir)
objects = ['cracker','bleach','sugar','tomato','mustard']
models = {}
tmp = glob.glob('{}/CADmodels/*/points.xyz'.format(args.ycb_dir))
for t in tmp:
with open(t,'r') as ff:
lines = ff.readlines()
model_pts = []
for i in range(len(lines)):
line = list(map(float,lines[i].rstrip().split()))
model_pts.append(line)
model_pts = np.array(model_pts)
model_pts.reshape(-1,3)
model = U.toOpen3dCloud(model_pts,colors=np.zeros(model_pts.shape,dtype=np.float64))
for obj in objects:
if obj in t:
models[obj] = model
class_res = {}
for obj in objects:
class_res[obj] = {'add':[],'add-s':[]}
folders = os.listdir(res_dir)
for folder in folders:
if '.tar.gz' in folder:
continue
print(folder)
pred_files = sorted(glob.glob(res_dir+folder+'/*.txt'))
obj = None
for o in objects:
if o in folder:
gt_files = sorted(glob.glob(data_dir+folder+"/annotated_poses/*.txt"))
obj = o
break
assert len(pred_files)==len(gt_files),'#pred_files:{}, #gt_files:{}'.format(len(pred_files),len(gt_files))
for i in range(len(pred_files)):
pred = np.loadtxt(pred_files[i])
gt = np.loadtxt(gt_files[i])
add = U.add(pred,gt,models[obj])
adi = U.adi(pred,gt,models[obj])
class_res[obj]['add'].append(add)
class_res[obj]['add-s'].append(adi)
adds = []
adis = []
for k in class_res.keys():
adi = class_res[k]['add-s']
adis += adi
adi_auc = VOCap(adi) * 100
add = class_res[k]['add']
adds += add
add_auc = VOCap(add) * 100
print('{}: adi={} add={}'.format(k,adi_auc,add_auc))
adi_auc = VOCap(adis) * 100
add_auc = VOCap(adds) * 100
print('Total pose:',len(adis))
print('\nOverall, adi={} add={}'.format(adi_auc,add_auc))
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--YCBInEOAT_dir', default='/media/bowen/e25c9489-2f57-42dd-b076-021c59369fec/catkin_ws/src/iros20_dataset/video_rosbag/IROS_SELECTED/FINISHED_LABEL.iros_submission_version')
parser.add_argument('--ycb_dir', default='/media/bowen/e25c9489-2f57-42dd-b076-021c59369fec/DATASET/Tracking/YCB_Video_Dataset')
parser.add_argument('--class_id',type=int,default=1)
parser.add_argument('--res_dir',type=str,default='/home/bowen/debug/ycb_results')
args = parser.parse_args()
eval_all(args)