-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsft_lora.py
167 lines (141 loc) · 5.6 KB
/
sft_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from datasets import load_dataset
import transformers
from transformers import Trainer, TrainingArguments
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
from peft import (
LoraConfig,
get_peft_model,
prepare_model_for_kbit_training,
set_peft_model_state_dict,
)
import torch
### 定义一些配置信息
CUTOFF_LEN = 1024
VAL_SET_SIZE = 2000
DATA_PATH = "./dataset/Belle_open_source_0.5M.json"
OUTPUT_DIR = "baichuansft"
resume_from_checkpoint = "baichuansft"
device_map = {"": 0}
tokenizer = AutoTokenizer.from_pretrained("./baichuan-7B",trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("./baichuan-7B",
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
),
device_map=device_map)
model = prepare_model_for_kbit_training(model)
### 所有的线性layer都装配上lora
import bitsandbytes as bnb
def find_all_linear_names(model):
#cls = bnb.nn.Linear8bitLt
cls = bnb.nn.Linear4bit
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
modules = find_all_linear_names(model)
config = LoraConfig(
r=8,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
target_modules=modules,
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
tokenizer.pad_token_id = 0
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = (
False # So the trainer won't try loading its state
)
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
data = load_dataset("json", data_files=DATA_PATH)
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=CUTOFF_LEN,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < CUTOFF_LEN
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
if add_eos_token and len(result["input_ids"]) >= CUTOFF_LEN:
result["input_ids"][CUTOFF_LEN - 1] = tokenizer.eos_token_id
result["attention_mask"][CUTOFF_LEN - 1] = 1
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
instruction = data_point['instruction']
input_text = data_point["input"]
input_text = "Human: " + instruction + input_text + "\n\nAssistant: "
input_text = tokenizer.bos_token + input_text if tokenizer.bos_token != None else input_text
target_text = data_point["output"] + tokenizer.eos_token
full_prompt = input_text + target_text
tokenized_full_prompt = tokenize(full_prompt)
return tokenized_full_prompt
if VAL_SET_SIZE > 0:
train_val = data["train"].train_test_split(
test_size=VAL_SET_SIZE, shuffle=True, seed=42
)
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
else:
train_data = data['train'].shuffle().map(generate_and_tokenize_prompt)
val_data = None
trainer = Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=TrainingArguments(
num_train_epochs=1,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
learning_rate=3e-4,
gradient_accumulation_steps=4,
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
save_strategy="steps",
eval_steps=2000 if VAL_SET_SIZE > 0 else None,
save_steps=2000,
output_dir=OUTPUT_DIR,
report_to = "tensorboard",
save_total_limit=3,
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
optim="adamw_torch"
),
data_collator=transformers.DataCollatorForSeq2Seq(tokenizer,
pad_to_multiple_of=8,
return_tensors="pt",
padding=True),
)
trainer.train(resume_from_checkpoint=False)
model.save_pretrained(OUTPUT_DIR)