-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
70 lines (52 loc) · 2.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import json
import nltk
import numpy as np
import tensorflow as tf
from tensorflow.keras import models, layers, optimizers, losses, metrics
from tensorflow.keras import callbacks
from tensorflow.python.keras.engine import input_layer
from tqdm import tqdm
checkpoint_path = "checkpoint/"
checkpoint_dir = os.path.dirname(checkpoint_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True, verbose=1)
with open('train_data.json', encoding='utf8') as f:
train = json.load(f)
with open('test_data.json', encoding='utf8') as f:
test = json.load(f)
tokens = [t for d in train for t in d[0]]
text = nltk.Text(tokens, name='NMSC')
layer = 10000 # word layers
words = [f[0] for f in text.vocab().most_common(layer)]
def term_frequency(doc, pbar):
if pbar: pbar.update()
return [doc.count(word) for word in words]
print('train Data')
# train_np = np.load('train.npz')
# X = train_np['X'].astype('float32')
# Y = train_np['Y'].astype('float32')
pbar = tqdm(total=len(train))
train_x = [term_frequency(d, pbar) for d, _ in train]
train_y = [c for _, c in train]
X = np.asarray(train_x).astype('float32')
Y = np.asarray(train_y).astype('float32')
np.savez('train', X=X, Y=Y)
print('test Data')
# test_np = np.load('test.npz')
# testX = test_np['X'].astype('float32')
# testY = test_np['Y'].astype('float32')
pbar = tqdm(total=len(test))
test_x = [term_frequency(d, pbar) for d, _ in test]
test_y = [c for _, c in test]
testX = np.asarray(test_x).astype('float32')
testY = np.asarray(test_y).astype('float32')
np.savez('test', X=testX, Y=testY)
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(layer, )))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss=losses.binary_crossentropy, metrics=[metrics.binary_accuracy])
model.fit(X, Y, epochs=10, batch_size=512, callbacks=[cp_callback])
model.save('model/')
results = model.evaluate(testX, testY)
print(results)