-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_model.py
477 lines (325 loc) · 13 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from __future__ import absolute_import, division, print_function, unicode_literals
from dm_control import mujoco
from dm_control import suite
from dm_control import viewer
from dm_control.suite import common
import numpy as np
import math as m
from math import pi, sqrt, sin ,cos
import pandas as pd
import random as r
import os
import sys
import subprocess
import matplotlib.pyplot as plt
import pyquaternion as pq
from timeit import default_timer as timer
from PIL import Image
import xml.etree.ElementTree as ET
import glob
import time
import tensorflow as tf
from tensorflow.keras.models import load_model as load
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import backend as K
from IPython import embed
suite_dir = "".join(suite.__path__)
np.set_printoptions(linewidth=np.inf)
np.set_printoptions(suppress=True)
global L
test_data_loc = 'random_ms'
# Either load a compiled model or just the weights of a model
# (if the model was trained with a custom loss, only able to use weights)
load_weights_only = True
load_model_loc = 'model_.hdf5'
load_weights_loc = 'model_weights.h5'
_DOF = 2
_MAX_SLIDERS = 4 # number of sliders in the rendering xml file (per state)
_N_SLIDERS = 4 # number of sliders the network takes/outputs
_VARS = 6
_CTRL_DUR = 1
N_QPOS = _DOF + 7*_MAX_SLIDERS
N_QVEL = _DOF + 6*_MAX_SLIDERS
cols_in = _DOF + _N_SLIDERS*_VARS
cols_out = _N_SLIDERS*_VARS
use_customloss = True
use_weighted_loss = True
max_penetration = 5e-4
penalizing_factor = 2
rs = 0.05115
rp = 0.0145
render = True
show_error = True
sample_size = 1000
batch_size = 1
#############################################################################################################
def data_import(test_data_loc):
''' This function imports csv datafiles for testing, and crops their size accordingly.
Args:
test_data_loc: Prefix to name of test data files.
Returns:
x: Test input data.
y: Test output labels.
'''
# Load in all testing data
test_inputs = pd.read_csv('%s_initial.csv' % test_data_loc, sep=',', header=None)
x = np.array(test_inputs)
test_labels = pd.read_csv('%s_final.csv' % test_data_loc, sep=',', header=None)
y = np.array(test_labels)
x = x[:,:cols_in]
y = y[:,:cols_out]
L = np.shape(x)[0]
ind = r.sample(range(L), sample_size)
x = x[ind,:]
y = y[ind,:]
return x, y
def reset(state, physics):
''' This function resets the physics of an environment and implements a new state.
Args:
state: New physics state to set.
physics: Physics object to reset.
'''
with physics.reset_context():
physics.set_state(state)
physics.step()
def physics_from_xml(xml_location):
''' This function takes an xml file and creates a physics instance.
Args:
xml_location: Location of the xml environment file to use.
Returns:
root: xml root that can be edited if necessary.
physics: Physics object created form xml.
'''
# Load in .xml file and get root
tree = ET.parse(xml_location)
root = tree.getroot()
# Create string from updated .xml file and create physics environment
xml_string = ET.tostring(root, encoding='unicode')
physics = mujoco.Physics.from_xml_string(xml_string)
return root, physics
def renderer(indices, folder_prefix='', empty_folder=True):
''' This function renders the predicted state (red) against the correct state (green) for comparison.
Args:
indices: Indices of the test dataset to render from.
folder_prefix: Prefix of the folder to save renders to.
empty_folder: Decide whether or not to empty the folder.
'''
if render:
# If folder exists, and we would like to empty it ...
if os.path.isdir('%stest_model_renders' % folder_prefix) and empty_folder:
# ...remove directory...
subprocess.call(["rm", "-r", '%stest_model_renders' % folder_prefix])
# ...and create empty directory
os.mkdir('%stest_model_renders' % folder_prefix)
# If it doesn't exist...
elif not os.path.isdir('%stest_model_renders' % folder_prefix):
# ...create empty directory
os.mkdir('%stest_model_renders' % folder_prefix)
# Load in .xml file and get physics object
_, physics = physics_from_xml('%s/multislider_render.xml' % suite_dir)
for i in indices:
state_im = '%stest_model_renders/#%d.png' % (folder_prefix, int(i+1))
# Set input state and render
length = 164
state = np.zeros((length,))
state[0:_DOF] = np.array([0, 0]) # initial state pusher pos
state[N_QPOS:N_QPOS+_DOF] = np.array([x[i,0],x[i,1]]) # final state pusher pos
for m in range(_MAX_SLIDERS):
if m == 0:
state[_DOF:_DOF+7] = np.array([x[i,_DOF], 0, 0.00005, 1, 0, 0, 0])
state[N_QPOS+_DOF:N_QPOS+_DOF+7] = np.array([x[i,_DOF]+y[i,0], y[i,1], 0.00015, 1, 0, 0, 0])
state[2*N_QPOS:2*N_QPOS+7] = np.array([x[i,_DOF]+p[i,0], p[i,1], 0.00025, 1, 0, 0, 0])
elif m < _N_SLIDERS:
state[_DOF+7*m:_DOF+7*(m+1)] = np.array([x[i,_DOF+_VARS*m-1], x[i,_DOF+_VARS*m], 0.00005, 1, 0, 0, 0])
state[N_QPOS+_DOF+7*m:N_QPOS+_DOF+7*(m+1)] = np.array([x[i,_DOF+_VARS*m-1]+y[i,_VARS*m], x[i,_DOF+_VARS*m]+y[i,_VARS*m+1], 0.00015, 1, 0, 0, 0])
state[2*N_QPOS+7*m:2*N_QPOS+7*(m+1)] = np.array([x[i,_DOF+_VARS*m-1]+p[i,_VARS*m], x[i,_DOF+_VARS*m]+p[i,_VARS*m+1], 0.00025, 1, 0, 0, 0])
else:
state[_DOF+7*m:_DOF+7*(m+1)] = np.array([m, m, 0.00005, 1, 0, 0, 0])
state[N_QPOS+_DOF+7*m:N_QPOS+_DOF+7*(m+1)] = np.array([m+1, m+1, 0.00015, 1, 0, 0, 0])
state[2*N_QPOS+7*m:2*N_QPOS+7*(m+1)] = np.array([m+2, m+2, 0.00025, 1, 0, 0, 0])
reset(state, physics)
image_array = physics.render(height=480, width=600, camera_id='fixed')
img = Image.fromarray(image_array, 'RGB')
img.save(state_im)
def get_model(model_location, load_weights_only=True):
''' This function gets a trained, compiled model either from a model file or a weights file.
Args:
model_location: Location of the model or weights to load.
load_weights_only: Decide whether to load compiled model or just weights.
Returns:
model: Compiled model.
'''
if load_weights_only:
# Network architecture - must be the exact same as the model's which you are loading in
inputs = layers.Input(shape=(cols_in,))
layer1 = layers.Dense(512, use_bias=True, activation='relu')(inputs)
layer2 = layers.Dense(256, use_bias=True, activation='relu')(layer1)
layer3 = layers.Dense(128, use_bias=True, activation='relu')(layer2)
layer4 = layers.Dense(64, use_bias=True, activation='relu')(layer3)
outputs = layers.Dense(cols_out, activation='linear')(layer4)
model = keras.Model(inputs=inputs, outputs = outputs)
# Set loss weights
if use_weighted_loss:
''' Weighs them depending on the rms average of the labels'''
rmsl = np.zeros((cols_out,))
weights = []
for c in range(cols_out):
rmsl[c] = sqrt(np.mean(np.square(y[:,c])))
max_rmsl = max(rmsl)
for c in range(cols_out):
weights.append(max_rmsl/rmsl[c])
weights = [weights]
else:
''' Sets all loss weights to 1 '''
weights = []
for c in range(cols_out):
weights.append(1.)
weights = [weights]
# Set optimizer
optimizer = keras.optimizers.Nadam(lr=0.0001, decay=0)
# Compile
if use_customloss:
model.compile(optimizer=optimizer, loss=customloss_wrapper(inputs, weights), metrics=['accuracy'])
else:
model.compile(optimizer=optimizer, loss='mse', metrics=['accuracy'])
# Load in weights of a trained model
model.load_weights(model_location)
else:
# Load in trained & compiled model
model = load(model_location)
# Initialize predict function to reduce computation time
start = timer()
_ = model.predict(np.zeros((2,cols_in)))
init_t = 1000*( timer() - start )
return model, init_t
def get_predictions(model, x, y):
''' This function gets predictions from a model and a test dataset and computes error.
Args:
model: Model to test.
x: Input test data.
y: Output test labels.
Returns:
p: Predictions from model.
e: Prediction error (p-y)
'''
# Number of batches in test data
n_batches = int(sample_size/batch_size)
# Initialize arrays with zeros
nn_t = np.zeros((n_batches,))
p = np.zeros((sample_size,cols_out))
e = np.zeros((sample_size,cols_out))
# Make predictions and time
for batch in range(n_batches):
i = batch*batch_size
start = timer()
p[i:i+batch_size,:] = model.predict(x[i:i+batch_size,:])
if show_error:
e[i:i+batch_size,:] = p[i:i+batch_size,:]-y[i:i+batch_size,:]
nn_t[batch] = 1000*(timer()-start)
if batch==0:
print(' ')
print('Sample size: %d' % sample_size)
print('Batch size: %d' % batch_size)
print(' ')
print(' Time (ms)')
print('Initialization: %.3f' % init_t)
print('First batch: %.3f' % nn_t[0])
if n_batches > 1:
avg = nn_t[1:].mean()
print('Average thereafter: %.3f' % avg)
return p, e
def plot_error(e, y):
''' This function uses the error and labels data to plot average error across the different variables.
Args:
e: Prediction error array.
y: Output labels.
'''
if show_error:
boolean_ind = np.zeros((sample_size,cols_out), dtype=bool)
for i in range(sample_size):
boolean_ind[i,0:_VARS] = 1
for m in range(1, _N_SLIDERS):
if not x[i,_DOF+_VARS*m-1].is_integer():
boolean_ind[i,m*_VARS:(m+1)*_VARS] = 1
useful_e = e[boolean_ind]
useful_y = y[boolean_ind]
useful_e = np.reshape(useful_e, (int(len(useful_e)/_VARS),_VARS))
useful_y = np.reshape(useful_y, (int(len(useful_y)/_VARS),_VARS))
rms_error = np.zeros((_VARS,))
rms_label = np.zeros((_VARS,))
for c in range(_VARS):
rms_error[c] = sqrt( np.mean(useful_e[:,c]**2) )
rms_label[c] = sqrt( np.mean(useful_y[:,c]**2) )
print()
print('RMSE')
print('dx: %f (vs. %f)' % (rms_error[0], rms_label[0]))
print('dy: %f (vs. %f)' % (rms_error[1], rms_label[1]))
print('d0: %f (vs. %f)' % (rms_error[2], rms_label[2]))
print('vx: %f (vs. %f)' % (rms_error[3], rms_label[3]))
print('vy: %f (vs. %f)' % (rms_error[4], rms_label[4]))
print('v0: %f (vs. %f)' % (rms_error[5], rms_label[5]))
i = np.zeros_like(useful_e)
for c in range(_VARS):
i[:,c] += c
plt.scatter(i[:,c],useful_e[:,c],s=5)
plt.title('RMS Error per variable')
plt.legend(['X', 'Y', 'theta', 'vx', 'vy', 'vtheta'], ncol=2, loc='best')
plt.show(block=False)
plt.pause(15)
plt.close()
def customloss_wrapper(inputs, loss_weights):
def customloss(y_true, y_pred):
losses = tf.reduce_mean(tf.math.squared_difference(y_true,y_pred))
loss = tf.reduce_mean(tf.multiply(loss_weights,losses))/tf.math.reduce_sum(loss_weights)
for m in range(_N_SLIDERS):
if m == 0:
pusher_penetration = tf.math.sqrt( tf.math.square((inputs[:,_DOF]+y_pred[:,0])-inputs[:,0]*_CTRL_DUR) + tf.math.square(y_pred[:,1]-inputs[:,1]*_CTRL_DUR) ) - (rs + rp)
else:
pusher_penetration = tf.math.sqrt( tf.math.square((inputs[:,_DOF+_VARS*m-1]+y_pred[:,_VARS*m])-inputs[:,0]*_CTRL_DUR) + tf.math.square(y_pred[:,_VARS*m+1]-inputs[:,1]*_CTRL_DUR) ) - (rs + rp)
zero = tf.zeros_like(pusher_penetration)
pusher_penetration = tf.where(pusher_penetration<(zero-max_penetration), pusher_penetration, zero)
loss += tf.math.square(tf.reduce_mean(pusher_penetration)*penalizing_factor)
slider_penetration = 0
for i in range(m+1, _N_SLIDERS):
if m == 0:
penetration = tf.math.sqrt( tf.math.square( (inputs[:,_DOF]+y_pred[:,0]) - (inputs[:,_DOF+_VARS*i-1]+y_pred[:,_VARS*i]) ) + tf.math.square( y_pred[:,1] - (inputs[:,_DOF+_VARS*i]+y_pred[:,_VARS*i+1]) ) ) - 2*rs
else:
penetration = tf.math.sqrt( tf.math.square( (inputs[:,_DOF+_VARS*m-1]+y_pred[:,_VARS*m]) - (inputs[:,_DOF+_VARS*i-1]+y_pred[:,_VARS*i]) ) + tf.math.square( (inputs[:,_DOF+_VARS*m]+y_pred[:,_VARS*m+1]) - (inputs[:,_DOF+_VARS*i]+y_pred[:,_VARS*i+1]) ) ) - 2*rs
zero = tf.zeros_like(penetration)
penetration = tf.where(penetration<(zero-max_penetration), penetration, zero)
slider_penetration += tf.math.square(tf.reduce_mean(penetration)*penalizing_factor)
slider_penetration = K.print_tensor(slider_penetration)
loss += slider_penetration
return loss
return customloss
#####################################################################################################
if __name__ == '__main__':
x, y = data_import(test_data_loc)
L = np.shape(x)[0]
if load_weights_only:
model_loc = load_weights_loc
else:
model_loc = load_model_loc
model, init_t = get_model(model_loc)
p, e = get_predictions(model, x, y)
# Check for problematic and perfect x & y position error and get their indices
problematic = []
perfect = []
for l in range(sample_size):
for m in range(_N_SLIDERS):
if abs(e[l,0]) < .1*rs and abs(e[l,1]) < .1*rs:
if abs(e[l,6]) < .1*rs and abs(e[l,7]) < .1*rs:
if abs(e[l,12]) < .1*rs and abs(e[l,13]) < .1*rs:
if abs(e[l,18]) < .1*rs and abs(e[l,19]) < .1*rs:
perfect.append(l)
if abs(e[l,_VARS*m]) > .6*rs:
problematic.append(l)
elif abs(e[l,_VARS*m+1]) > .6*rs:
problematic.append(l)
# Create renders of initial and final states
#renderer(problematic, folder_prefix='bad_')
#renderer(perfect, folder_prefix='good_')
#renderer(r.sample(range(sample_size), 100))
# Error plots and calculations
plot_error(e,y)