-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
90 lines (75 loc) · 3.34 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, idx):
assert idx < len(self.data)
return self.data[idx]
def __len__(self):
return len(self.data)
class CustomCollator():
def __init__(self, max_seq_len, label2id, label_num, data_num, tokenizer, device, is_predict=False):
self.max_seq_len = max_seq_len
self.label2id = label2id
self.label_num = label_num
self.data_num = data_num
self.tokenizer = tokenizer
self.device = device
self.is_predict = is_predict
def __call__(self, batch_data):
# batch size must be 1
batch_text = [D['facts'] for D in batch_data]
text_encodings = self.tokenizer(
batch_text,
add_special_tokens=True,
max_length=self.max_seq_len,
padding='longest',
return_tensors='pt',
truncation=True,
# return_length=True,
)
res = {}
res['input_ids'] = text_encodings['input_ids'].to(self.device)
res['attention_mask'] = text_encodings['attention_mask'].to(self.device)
# res['timestamp'] = torch.tensor([[D['time_id'] / self.data_num] for D in batch_data]).to(self.device)
res['timestamp'] = torch.tensor([[D['time_id'] * 1.0] for D in batch_data]).to(self.device)
# res['timestamp'] = torch.tensor([[float(D['judgement_date'].split(' ')[0][-4:])] for D in batch_data]).to(self.device)
res['relevant_cases'] = []
for D in batch_data:
relevant_cases = D['relevant_cases']
text_encodings = self.tokenizer(
relevant_cases['facts'],
add_special_tokens=True,
max_length=self.max_seq_len,
padding='longest',
return_tensors='pt',
truncation=True,
# return_length=True,
)
labels = torch.zeros(len(relevant_cases['case_ids']), self.label_num).to(self.device)
for i, vs in enumerate(relevant_cases['violated_articles']):
for v in vs:
labels[i, self.label2id[v]] = 1
res['relevant_cases'].append({
'input_ids': text_encodings['input_ids'].to(self.device),
'attention_mask': text_encodings['attention_mask'].to(self.device),
'labels': labels,
'scores': torch.tensor(D['relevant_cases']['scores']).to(self.device)
})
if not self.is_predict:
res['gold_labels'] = torch.zeros(len(batch_data), self.label_num).to(self.device)
for i, D in enumerate(batch_data):
for article in D['violated_articles']:
res['gold_labels'][i, self.label2id[article]] = 1
return res
def get_dataloader(data, batch_size, max_seq_len, label2id, label_num, data_num, tokenizer, device, is_shuffle=False, is_predict=False):
convert_to_features = CustomCollator(max_seq_len, label2id, label_num, data_num, tokenizer, device, is_predict)
dataset = CustomDataset(data)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=is_shuffle,
collate_fn=convert_to_features
)
return dataloader