-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
160 lines (121 loc) · 4.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torchnet as tnt
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader
from torchnet.engine import Engine
from tqdm import tqdm
from data_generate import DatasetFromFolder
from model import SPCNNet
from psnrmeter import PSNRMeter
from matplotlib import pyplot as plt
global meter_loss
global meter_psnr
global scheduler
global engine
global epoch_num
global psnr_value
global loss_value
global train_loader
global val_loader
global model
global criterion
global UPSCALE_FACTOR
def processor(sample):
data, target, training = sample
data = Variable(data)
target = Variable(target)
if torch.cuda.is_available():
data = data.cuda()
target = target.cuda()
output = model(data)
loss = criterion(output, target)
return loss, output
def on_sample(state):
state['sample'].append(state['train'])
def reset_meters():
meter_psnr.reset()
meter_loss.reset()
def on_forward(state):
meter_psnr.add(state['output'].data, state['sample'][1])
meter_loss.add(state['loss'].item())
def on_start_epoch(state):
reset_meters()
scheduler.step()
state['iterator'] = tqdm(state['iterator'])
def on_end_epoch(state):
print('[Epoch %d] Train Loss: %.4f (PSNR: %.2f db)' % (
state['epoch'], meter_loss.value()[0], meter_psnr.value()))
reset_meters()
engine.test(processor, val_loader)
print('[Epoch %d] Val Loss: %.4f (PSNR: %.2f db)' % (
state['epoch'], meter_loss.value()[0], meter_psnr.value()))
epoch_num.append(int(state['epoch']))
psnr_value.append(meter_psnr.value())
loss_value.append(meter_loss.value()[0])
torch.save(model.state_dict(), 'epochs/epoch_%d_%d.pt' % (UPSCALE_FACTOR, state['epoch']))
def main(factor):
global meter_loss
global meter_psnr
global scheduler
global engine
global epoch_num
global psnr_value
global loss_value
global train_loader
global val_loader
global model
global criterion
global UPSCALE_FACTOR
parser = argparse.ArgumentParser(description='Super Resolution Training')
parser.add_argument('--upscale_factor', default=3, type=int, help='super resolution upscale factor')
parser.add_argument('--num_epochs', default=100, type=int, help='super resolution epochs number')
opt = parser.parse_args()
UPSCALE_FACTOR = opt.upscale_factor
NUM_EPOCHS = opt.num_epochs
if factor != 3:
UPSCALE_FACTOR = factor
train_set = DatasetFromFolder('data/train', upscale_factor=UPSCALE_FACTOR, input_transform=transforms.ToTensor(),
target_transform=transforms.ToTensor())
val_set = DatasetFromFolder('data/val', upscale_factor=UPSCALE_FACTOR, input_transform=transforms.ToTensor(),
target_transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_set, num_workers=0, batch_size=64, shuffle=True)
val_loader = DataLoader(dataset=val_set, num_workers=0, batch_size=64, shuffle=False)
model = SPCNNet(upscale_factor=UPSCALE_FACTOR)
criterion = nn.MSELoss()
if torch.cuda.is_available():
model = model.cuda()
criterion = criterion.cuda()
print('# upscale factor:', UPSCALE_FACTOR)
print('# parameters:', sum(param.numel() for param in model.parameters()))
optimizer = optim.Adam(model.parameters(), lr=1e-3)
scheduler = MultiStepLR(optimizer, milestones=[30, 80], gamma=0.1)
engine = Engine()
meter_loss = tnt.meter.AverageValueMeter()
meter_psnr = PSNRMeter()
epoch_num = []
psnr_value = []
loss_value = []
engine.hooks['on_sample'] = on_sample
engine.hooks['on_forward'] = on_forward
engine.hooks['on_start_epoch'] = on_start_epoch
engine.hooks['on_end_epoch'] = on_end_epoch
engine.train(processor, train_loader, maxepoch=NUM_EPOCHS, optimizer=optimizer)
plt.plot(epoch_num, psnr_value, lw=2, ls='-', label="PSNR--x"+str(UPSCALE_FACTOR), color="r", marker="+")
plt.xlabel("epoch time(s)", fontsize=16, horizontalalignment="right")
plt.ylabel("PSNR value", fontsize=16, horizontalalignment="right")
plt.legend()
plt.savefig('D:\大三上\数字图像处理\SR_Project\plots\PSNRx'+str(UPSCALE_FACTOR)+'.png')
plt.show()
plt.plot(epoch_num, loss_value, lw=2, ls='-', label="Loss--x"+str(UPSCALE_FACTOR), color="r", marker="+")
plt.xlabel("epoch time(s)", fontsize=16, horizontalalignment="right")
plt.ylabel("Loss value", fontsize=16, horizontalalignment="right")
plt.legend()
plt.savefig('D:\大三上\数字图像处理\SR_Project\plots\LOSSx'+str(UPSCALE_FACTOR)+'.png')
plt.show()
if __name__ == "__main__":
main(3)