-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathutils.py
392 lines (284 loc) · 12.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import numpy as np
import os
import cv2
import json
import torch
import torchvision
class CustomDataset(torch.utils.data.dataset.Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __getitem__(self, index):
return self.data[index], self.labels[index]
def __len__(self):
return len(self.labels)
class BaseDataLoader:
def __init__(self, batch_size=1, train=True, shuffle=True, drop_last=False):
pass
def get_loader(self, loader, prob):
raise NotImplementedError
def get_labels(self, task):
raise NotImplementedError
def __iter__(self):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
@property
def num_channels(self):
raise NotImplementedError
@property
def num_classes_single(self):
raise NotImplementedError
@property
def num_classes_multi(self):
raise NotImplementedError
class CIFAR10Loader(BaseDataLoader):
def __init__(self, batch_size=128, train=True, shuffle=True, drop_last=False):
super(CIFAR10Loader, self).__init__(batch_size, train, shuffle, drop_last)
transform = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]
)
dataset = torchvision.datasets.CIFAR10(root='./data', train=train,
download=True, transform=transform)
self.dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last)
self.task_dataloader = None
self._len = 50000 if train else 10000
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
def _create_TaskDataLoaders(self):
images = []
labels = []
for batch_images, batch_labels in self.dataloader:
for i in batch_images:
images.append(i)
for l in batch_labels:
labels.append(l)
self.task_dataloader = []
for t in range(10):
dataset = CustomDataset(data=images.copy(), labels=[(c == t).long() for c in labels])
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
drop_last=self.drop_last)
self.task_dataloader.append(dataloader)
def get_loader(self, loader='standard', prob='uniform'):
if loader == 'standard':
return self.dataloader
if self.task_dataloader is None:
self._create_TaskDataLoaders()
if loader == 'multi-task':
return MultiTaskDataLoader(self.task_dataloader, prob)
else:
assert loader in list(range(10)), 'Unknown loader: {}'.format(loader)
return self.task_dataloader[loader]
def get_labels(self, task='standard'):
if task == 'standard':
return list(range(10))
else:
assert task in list(range(10)), 'Unknown task: {}'.format(task)
labels = [0 for _ in range(10)]
labels[task] = 1
return labels
def __iter__(self):
return iter(self.dataloader)
def __len__(self):
return self._len
@property
def num_channels(self):
return 3
@property
def num_classes_single(self):
return 10
@property
def num_classes_multi(self):
return [2 for _ in range(10)]
class CIFAR100Loader(BaseDataLoader):
def __init__(self, batch_size=128, train=True, shuffle=True, drop_last=False):
super(CIFAR100Loader, self).__init__(batch_size, train, shuffle, drop_last)
transform = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))]
)
dataset = torchvision.datasets.CIFAR100(root='./data', train=train,
download=True, transform=transform)
self.dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last)
self.task_dataloader = None
self.labels = None
self._len = 50000 if train else 10000
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
def _create_TaskDataLoaders(self):
with open('CIFAR100_fine2coarse.json', 'r') as f:
data_info = json.load(f)
images = [[] for _ in range(20)]
labels = [[] for _ in range(20)]
for batch_images, batch_labels in self.dataloader:
for i, l in zip(batch_images, batch_labels):
images[data_info['task'][l]].append(i)
labels[data_info['task'][l]].append(data_info['subclass'][l])
self.task_dataloader = []
for task_images, task_labels in zip(images, labels):
dataset = CustomDataset(data=task_images, labels=task_labels)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
drop_last=self.drop_last)
self.task_dataloader.append(dataloader)
def get_loader(self, loader='standard', prob='uniform'):
if loader == 'standard':
return self.dataloader
if self.task_dataloader is None:
self._create_TaskDataLoaders()
if loader == 'multi-task':
return MultiTaskDataLoader(self.task_dataloader, prob)
else:
assert loader in list(range(20)), 'Unknown loader: {}'.format(loader)
return self.task_dataloader[loader]
def _create_labels(self):
with open('CIFAR100_fine2coarse.json', 'r') as f:
data_info = json.load(f)
self.labels = [[] for _ in range(20)]
for i, t in enumerate(data_info['task']):
self.labels[t].append(i)
def get_labels(self, task='standard'):
if task == 'standard':
return list(range(100))
else:
assert task in list(range(20)), 'Unknown task: {}'.format(task)
if self.labels is None:
self._create_labels()
return self.labels[task]
def __iter__(self):
return iter(self.dataloader)
def __len__(self):
return self._len
@property
def num_channels(self):
return 3
@property
def num_classes_single(self):
return 100
@property
def num_classes_multi(self):
return [5 for _ in range(20)]
class OmniglotLoader(BaseDataLoader):
def __init__(self, batch_size=128, train=True, shuffle=True, drop_last=False):
super(OmniglotLoader, self).__init__(batch_size, train, shuffle, drop_last)
omniglot_path = './data/omniglot'
if os.path.isdir(omniglot_path):
print('Files already downloaded and verified')
else:
raise FileNotFoundError('Omniglot dataset not found. Please download it and put it under \'{}\''.format(omniglot_path))
images = []
labels = []
self._len = 0
self.task_dataloader = []
self.num_classes = []
for p in [os.path.join(omniglot_path, 'images_background'), os.path.join(omniglot_path, 'images_evaluation')]:
for task_path in sorted(os.listdir(p)):
task_path = os.path.join(p, task_path)
task_images = []
task_labels = []
for i, cls_path in enumerate(sorted(os.listdir(task_path))):
cls_path = os.path.join(task_path, cls_path)
ims = [cv2.imread(os.path.join(cls_path, filename), cv2.IMREAD_GRAYSCALE) / 255 for filename in sorted(os.listdir(cls_path))]
if train:
ims = ims[:int(len(ims)*0.8)]
else:
ims = ims[int(len(ims)*0.8):]
self._len += len(ims)
task_images += ims
task_labels += [i for _ in range(len(ims))]
task_images = np.expand_dims(task_images, 1)
dataset = CustomDataset(data=torch.Tensor(task_images).float(), labels=torch.Tensor(task_labels).long())
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last)
self.task_dataloader.append(dataloader)
self.num_classes.append(len(np.unique(task_labels)))
images.append(task_images)
labels.append(task_labels)
images = np.concatenate(images)
labels = np.concatenate(labels)
new_label = 0
new_labels = [new_label]
for prev_label, label in zip(labels[:-1], labels[1:]):
if prev_label != label:
new_label += 1
new_labels.append(new_label)
new_labels = torch.Tensor(new_labels).long()
images = torch.from_numpy(images).float()
dataset = CustomDataset(data=images, labels=new_labels)
self.dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last)
self.labels = []
cnter = 0
for num_classes in self.num_classes:
self.labels.append(list(range(cnter, cnter + num_classes)))
cnter += num_classes
self.batch_size = batch_size
self.shuffle = shuffle
self.drop_last = drop_last
def get_loader(self, loader='standard', prob='uniform'):
if loader == 'standard':
return self.dataloader
if loader == 'multi-task':
return MultiTaskDataLoader(self.task_dataloader, prob)
else:
assert loader in list(range(50)), 'Unknown loader: {}'.format(loader)
return self.task_dataloader[loader]
def get_labels(self, task='standard'):
if task == 'standard':
return list(range(50))
else:
assert task in list(range(50)), 'Unknown task: {}'.format(task)
return self.labels[task]
def __iter__(self):
return iter(self.dataloader)
def __len__(self):
return self._len
@property
def num_channels(self):
return 1
@property
def num_classes_single(self):
return sum(self.num_classes)
@property
def num_classes_multi(self):
return self.num_classes
class MultiTaskDataLoader:
def __init__(self, dataloaders, prob='uniform'):
self.dataloaders = dataloaders
self.iters = [iter(loader) for loader in self.dataloaders]
if prob == 'uniform':
self.prob = np.ones(len(self.dataloaders)) / len(self.dataloaders)
else:
self.prob = prob
self.size = sum([len(d) for d in self.dataloaders])
self.step = 0
def __iter__(self):
return self
def __next__(self):
if self.step >= self.size:
self.step = 0
raise StopIteration
task = np.random.choice(list(range(len(self.dataloaders))), p=self.prob)
try:
data, labels = self.iters[task].__next__()
except StopIteration:
self.iters[task] = iter(self.dataloaders[task])
data, labels = self.iters[task].__next__()
self.step += 1
return data, labels, task