-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
236 lines (182 loc) · 7.79 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
output: github_document
bibliography: vignettes/bibliography.bib
link-citations: TRUE
csl: vignettes/cran_style.csl
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
```{r setup, include = FALSE}
require(qfratio)
set.seed(64501)
```
# qfratio: R Package for Moments and Distributions of Ratios of Quadratic Forms
<!-- badges: start -->
[![R-CMD-check](https://github.com/watanabe-j/qfratio/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/watanabe-j/qfratio/actions/workflows/R-CMD-check.yaml)
<!-- badges: end -->
This package provides functions to evaluate moments of ratios
(and products) of quadratic forms in normal variables, specifically using
recursive algorithms developed by @BaoKan2013 and @HillierEtAl2014.
Generating functions for these moments are closely related to the
top-order zonal and invariant polynomials of matrix arguments.
It also provides some functions to evaluate distribution and density
functions of simple ratios of quadratic forms in normal variables
using several methods from @Imhof1961, @Hillier2001,
@Forchini2002[@Forchini2005], @ButlerPaolella2008, and @BrodaPaolella2009.
There exist a couple of `Matlab` programs developed by Raymond Kan
(available from <https://www-2.rotman.utoronto.ca/~kan/>) for evaluating the
moments, but this `R` package is an independent project (not a fork or
translation) and has different functionalities, including evaluation of
moments of multiple ratios of a particular form and scaling to avoid numerical
overflow.
This has originally been developed for a biological application,
specifically for evaluating average evolvability measures in
evolutionary quantitative genetics [@Watanabe2023cevo], but can be used
for a broader class of statistics.
## Installation
***WARNING*** Installation size of this package can be very large
(>100 MB on Linux and macOS; ~3 MB on Windows with a recent version (`>= 4.2`)
of `Rtools`), as it involves lots of `RcppEigen` functions.
### From CRAN (stable version)
```{r eval = FALSE}
install.packages("qfratio")
```
### From GitHub (development version)
```{r eval = FALSE}
## Install devtools first:
# install.packages("devtools")
## Recommended installation (pandoc required):
devtools::install_github("watanabe-j/qfratio", dependencies = TRUE, build_vignettes = TRUE)
## Minimal installation:
# devtools::install_github("watanabe-j/qfratio")
```
### Dependencies
Imports: Rcpp, MASS, stats
LinkingTo: Rcpp, RcppEigen
Suggests: mvtnorm, CompQuadForm, graphics, testthat (>= 3.0.0),
knitr, rmarkdown
If installing from source, you also need [`pandoc`](https://pandoc.org) for
correctly building the vignette.
For `pandoc < 2.11`, `pandoc-citeproc` is required as well.
(Never mind if you use `RStudio`, which appears to have them bundled.)
## Examples
This package has two major functionalities: evaluating moments and
distribution function of ratios of quadratic forms in normal variables.
### Moments
This functionality concerns evaluation of the following moments:
$\mathrm{E} \left( \left( \mathbf{x}^T \mathbf{A} \mathbf{x} \right)^p /
\left( \mathbf{x}^T \mathbf{B} \mathbf{x} \right)^q \right)$ and
$\mathrm{E} \left( \left( \mathbf{x}^T \mathbf{A} \mathbf{x} \right)^p /
\left( \mathbf{x}^T \mathbf{B} \mathbf{x} \right)^q
\left( \mathbf{x}^T \mathbf{D} \mathbf{x} \right)^r \right)$,
where $\mathbf{x} \sim N_n \left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$.
These quantities are evaluated by `qfrm(A, B, p, q, ...)` and
`qfmrm(A, B, D, p, q, r, ...)`.
Because they are evaluated as partial sums of infinite series
[@Smith1989; @Smith1993; @BaoKan2013; @HillierEtAl2009; @HillierEtAl2014],
the evaluation results come with an error bound (where available), and
a `plot` method is defined for inspecting numerical convergence.
```{r, examples}
## Simple matrices
nv <- 4
A <- diag(1:nv)
B <- diag(sqrt(nv:1))
## Expectation of (x^T A x)^2 / (x^T x)^2 where x ~ N(0, I)
qfrm(A, p = 2)
## Compare with Monte Carlo mean
mean(rqfr(1000, A = A, p = 2))
## Expectation of (x^T A x)^1/2 / (x^T x)^1/2
(mom_A0.5 <- qfrm(A, p = 1/2))
## Monte Carlo mean
mean(rqfr(1000, A = A, p = 1/2))
plot(mom_A0.5)
## Expectation of (x^T x) / (x^T A^-1 x)
## = "average conditional evolvability"
(avr_cevoA <- qfrm(diag(nv), solve(A)))
mean(rqfr(1000, A = diag(nv), B = solve(A), p = 1))
plot(avr_cevoA)
## Expectation of (x^T x)^2 / (x^T A x) (x^T A^-1 x)
## = "average autonomy"
(avr_autoA <- qfmrm(diag(nv), A, solve(A), p = 2, q = 1, r = 1))
mean(rqfmr(1000, A = diag(nv), B = A, D = solve(A), p = 2, q = 1, r = 1))
plot(avr_autoA)
## Expectation of (x^T A B x) / ((x^T A^2 x) (x^T B^2 x))^1/2
## = "average response correlation"
## whose Monte Carlo evaluation is called the "random skewers" analysis,
## while this is essentially an analytic solution (with slight truncation error)
(avr_rcorA <- qfmrm(crossprod(A, B), crossprod(A), crossprod(B),
p = 1, q = 1/2, r = 1/2))
mean(rqfmr(1000, A = crossprod(A, B), B = crossprod(A), D = crossprod(B),
p = 1, q = 1/2, r = 1/2))
plot(avr_rcorA)
## More complex (but arbitrary) example
## Expectation of (x^T A x)^2 / (x^T B x)^3 where x ~ N(mu, Sigma)
mu <- 1:nv / nv
Sigma <- diag(runif(nv) * 3)
(mom_A2B3 <- qfrm(A, B, p = 2, q = 3, mu = mu, Sigma = Sigma,
m = 500, use_cpp = TRUE))
plot(mom_A2B3)
```
### Distributions
This functionality concerns evaluation of the (cumulative) distribution
function, probability density, and quantiles of
$\left( \mathbf{x}^T \mathbf{A} \mathbf{x} /
\mathbf{x}^T \mathbf{B} \mathbf{x} \right) ^ p$,
where $\mathbf{x} \sim N_n \left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$.
These are implemented in `pqfr(quantile, A, B, p, ...)`,
`dqfr(quantile, A, B, p, ...)`, and `qqfr(probability, A, B, p, ...)`,
whose usage mimics that of regular distribution-related functions.
```{r, examples_distr}
## Example parameters
nv <- 4
A <- diag(1:nv)
B <- diag(sqrt(nv:1))
mu <- 1:nv * 0.2
quantiles <- 0:nv + 0.5
## Distribution function and density of
## (x^T A x) / (x^T B x) where x ~ N(0, I)
pqfr(quantiles, A, B)
dqfr(quantiles, A, B)
## 95, 99, and 99.9 percentiles of the same
qqfr(c(0.05, 0.01, 0.001), A, B, lower.tail = FALSE)
## Comparing profiles
qseq <- seq.int(1 / sqrt(nv) - 0.2, nv + 0.2, length.out = 100)
## Generate p-value sequences for
## (x^T A x) / (x^T B x) where x ~ N(0, I) vs
## (x^T A x) / (x^T B x) where x ~ N(mu, I)
pseq_central <- pqfr(qseq, A, B)
pseq_noncent <- pqfr(qseq, A, B, mu = mu)
## Graphical comparison
plot(qseq, type = "n", xlim = c(1 / sqrt(nv), nv), ylim = c(0, 1),
xlab = "q", ylab = "F(q)")
lines(qseq, pseq_central, col = "royalblue4", lty = 1)
lines(qseq, pseq_noncent, col = "tomato", lty = 2)
legend("topleft", legend = c("central", "noncentral"),
col = c("royalblue4", "tomato"), lty = 1:2)
## Generate density sequences for
## (x^T A x) / (x^T B x) where x ~ N(0, I) vs
## (x^T A x) / (x^T B x) where x ~ N(mu, I)
dseq_central <- dqfr(qseq, A, B)
dseq_noncent <- dqfr(qseq, A, B, mu = mu)
## Graphical comparison
plot(qseq, type = "n", xlim = c(1 / sqrt(nv), nv), ylim = c(0, 0.7),
xlab = "q", ylab = "f(q)")
lines(qseq, dseq_central, col = "royalblue4", lty = 1)
lines(qseq, dseq_noncent, col = "tomato", lty = 2)
legend("topright", legend = c("central", "noncentral"),
col = c("royalblue4", "tomato"), lty = 1:2)
```
## Copyright notice
This package bundles selected `C` codes and part of `config.ac` from the
[GNU Scientific Library](https://www.gnu.org/software/gsl/),
whose copyright belongs to the original authors.
See `DESCRIPTION` and individual code files in `src/gsl` for details.
The redistribution complies with the GNU General Public License version 3.
## References