-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWWW.hs
195 lines (154 loc) · 4.32 KB
/
WWW.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
module WWW where
fff :: Int -> Int
fff x = x + 3
-- LISTY
len :: [a] -> Int
len [] = 0
len (h:t) = 1 + len t
nth :: Int -> [a] -> a
nth 0 (h:_) = h
nth n (_:t) = nth (n-1) t
nth _ [] = error "lol empty"
rev :: [a] -> [a]
rev l = let
pom (h:t) acc = pom t (h:acc)
pom [] acc = acc
in pom l []
codrugi :: [a] -> [a]
codrugi l = let h1 (_:t) acc = h2 t acc
h1 [] acc = acc
h2 (h:t) acc = h1 t (h:acc)
h2 [] acc = acc
in rev $ h1 l []
rar [] _ = []
rar _ [] = []
rar (h1:t1) (h2:t2) = (h1, h2): rar t1 t2
unrar :: [(a,b)] -> ([a], [b])
unrar t = case t of
[] -> ([], [])
((h1, h2):tt) ->
let (l1, l2) = unrar tt
in (h1:l1, h2:l2)
filtr :: (a -> Bool) -> [a] -> [a]
filtr _ [] = []
filtr f (h:t) = if f h
then h: filtr f t
else filtr f t
filtr' :: (a -> Bool) -> [a] -> [a]
filtr' f l = rev $ helper f l [] where
helper f (h:t) acc =
helper f t (if f h then h:acc else acc)
helper _ [] acc = acc
mapa :: (a -> b) -> [a] -> [b]
mapa f l = rev $ helper f l [] where
helper f (h:t) a = helper f t (f h:a)
helper _ [] a = a
foldright f x l = case l of
[] -> x
(h:t) -> f h (foldright f x t)
foldleft f x [] = x
foldleft f x (h:t) = foldleft f (f x h) t
sort _ [] = []
sort c (h:t) = sort c (filter (c h) t)
++[h] ++ (sort c (filter (\x -> not $ c h x) t))
pierwsze = sito [2..] where
sito (h:t) = h : sito (filter (\x -> x`mod`h /= 0) t)
-- FIFO
data Fifo a = Fifo ([a], [a])
addF :: a -> Fifo a -> Fifo a
addF x (Fifo (l1, l2)) = Fifo (x:l1, l2)
popF :: Fifo a -> Fifo a
popF (Fifo (l1, l2)) = case l2 of
[] -> Fifo ([], tail . rev $ l1)
(_:t) -> Fifo(l1, t)
-- DRZEWO
data Tree a = Leaf | Node (Tree a) a (Tree a)
deriving (Show, Eq)
add :: Ord a => Tree a -> a -> Tree a
add Leaf k = Node Leaf k Leaf
add (Node l k r) x | x < k = Node (add l x) k r
| x > k = Node l k (add r x)
| otherwise = Node l k r
merge :: Ord a => Tree a -> Tree a -> Tree a
merge Leaf t = t
merge t Leaf = t
merge t (Node l k r) = add (merge l (merge t r)) k
sub :: Ord a => Tree a -> a -> Tree a
sub Leaf _ = Leaf
sub (Node l k r) x | x < k = Node (sub l x) k r
| x > k = Node l k (sub r x)
| otherwise = merge l r
suma :: Num a => Tree a -> a
suma Leaf = 0
suma (Node l k r) = k + suma r + suma l
fast :: Tree a -> [a]
fast = go [] where
go :: [a] -> Tree a -> [a]
go acc Leaf = acc
go acc (Node l k r) = go (k : go acc r) l
foldd :: (b -> a -> b -> b) -> b -> Tree a -> b
foldd _ x Leaf = x
foldd f x (Node l k r) =
f (foldd f x l) k (foldd f x r)
fastd :: Tree a -> [a]
fastd t = foldd f k t [] where
f fl a fr l = fl (a: fr l)
k = id
-- Rekord
data Ntree a = NLeaf
| NNode { left :: Ntree a
, val :: a
, right :: Ntree a
}
-- Monady
{-
class Monad m where
(>>=) :: m a -> (a -> m b) -> mb
return :: a -> m a
-}
data Nadjabłcze = NJ
data KraingaGrzybów = KG
data Papier = P
data Jabłko = Jabłko Nadjabłcze KraingaGrzybów Papier
mmj1 :: Maybe Nadjabłcze -> Maybe KraingaGrzybów -> Maybe Papier -> Maybe Jabłko
mmj1 mnj mkg mp =
case mnj of
Nothing -> Nothing
Just nj -> case mkg of
Nothing -> Nothing
Just kg -> case mp of
Nothing -> Nothing
Just p -> Just (Jabłko nj kg p)
mmj2 :: Maybe Nadjabłcze -> Maybe KraingaGrzybów -> Maybe Papier -> Maybe Jabłko
mmj2 mnj mkg mp =
mnj >>= \nj ->
mkg >>= \kg ->
mp >>= \p ->
return $ Jabłko nj kg p
mmj3 :: Maybe Nadjabłcze -> Maybe KraingaGrzybów -> Maybe Papier -> Maybe Jabłko
mmj3 mnj mkg mp = do
nj <- mnj
kg <- mkg
p <- mp
return $ Jabłko nj kg p
main :: IO ()
main = do
putStrLn "Whats ur name lol"
name <- getLine
let out = "lol nice name " ++ name
putStrLn out
-- Funkcje o wspólnej dziedzinie jako funktory, monady...
{-
instance Functor ((->) d) where
fmap :: (a -> b) -> (d -> a) -> (d -> b)
fmap = (.)
instance Applicative ((->) d) where
(<*>) :: (d -> a -> b) -> (d -> a) -> d -> b
ap <*> f = \d -> ap d (f d)
pure :: a -> (d -> a) -- czyli return w Applicative
pure = const
instance Monad ((->) d) where
return = pure
(>>=) :: (d -> a) -> (a -> d -> b) -> d -> b
f1 >>= f2 = \d -> f2 (f1 d) d
-}