-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdvs_dataset.py
152 lines (126 loc) · 4.83 KB
/
dvs_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
from torch.utils.data import Dataset
import h5py
import os
import sys
sys.path.append('.')
import numpy as np
import random
import pickle
def getDataFiles(list_filename):
return [line.rstrip() for line in open(list_filename)]
def load_h5(h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
return (data, label)
def loadDataFile(filename):
return load_h5(filename)
def load_h5_data_label_seg(h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
seg = f['pid'][:]
return (data, label, seg)
def loadDataFile_with_seg(filename):
return load_h5_data_label_seg(filename)
class DvsDataset(Dataset):
def __init__(self, DATADIR, train, num_points=1024, use_raw=True, sample='random_sample'):
super(DvsDataset, self).__init__()
self.num_points = num_points
self.use_raw = use_raw
self.sample = sample
if self.use_raw:
self.dataset_dir = os.path.join(DATADIR, "train") if train else os.path.join(DATADIR, "test")
files = os.listdir(self.dataset_dir)
print("processing dataset:{} ".format(self.dataset_dir))
else:
files = getDataFiles(os.path.join(DATADIR, 'train_files.txt')) if train else getDataFiles(os.path.join(DATADIR, 'test_files.txt'))
print("processing dataset:{} ".format(DATADIR))
self.data, self.label = [], []
if self.use_raw:
for f in files:
with open(os.path.join(self.dataset_dir, f), 'rb') as f:
dataset = pickle.load(f)
self.data += dataset['data']
self.label += dataset['label'].tolist()
else:
for f in files:
d, l= loadDataFile(os.path.join(DATADIR, f))
self.data.append(d)
self.label.append(l)
self.data = np.concatenate(self.data, axis=0).squeeze()
self.label = np.concatenate(self.label, axis=0).squeeze()
print(train, len(self.data))
def random_sample(self, events):
nr_events = events.shape[0]
idx = np.arange(nr_events)
np.random.shuffle(idx)
idx_full = np.zeros(self.num_points, dtype=int)
if nr_events <= self.num_points:
idx_full[0: nr_events] = idx[0: nr_events]
else:
idx_full = idx[0: self.num_points]
# idx = idx[0: self.num_points]
events = events[idx_full, ...]
return events
def continue_sample(self, events):
total_events = events.shape[0]
if (total_events <= self.num_points):
start_i = 0
end_i = total_events
valid_length = total_events
else:
start_i = np.random.randint(0, total_events - self.num_points)
end_i = start_i + self.num_points
valid_length = self.num_points
idx_full = np.zeros(self.num_points, dtype=int)
idx_full[0 : valid_length] = np.arange(start_i, end_i)
events = events[idx_full, ...]
return events
def uniform_sample(self, events):
total_events = events.shape[0]
if (total_events <= self.num_points):
start_i = 0
end_i = total_events
valid_length = total_events
idx_full = np.zeros(self.num_points, dtype=int)
idx_full[0 : valid_length] = np.arange(start_i, end_i)
else:
scale = math.floor(total_events / self.num_points)
start_i = np.random.randint(1, scale+1)
idx_full = np.arange(self.num_points) * scale
idx_full = np.clip(idx_full, a_min=0, a_max=total_events)
events = events[idx_full, ...]
return events
def __getitem__(self, index):
if self.use_raw:
label = int(self.label[index])
events = self.data[index]
if self.sample == 'random_sample':
events = self.random_sample(events)
elif self.sample == 'continue_sample':
events = self.continue_sample(events)
elif self.sample == 'uniform_sample':
events = self.uniform_sample(events)
else:
raise ValueError
events_normed = np.zeros_like(events, dtype=np.float32)
x = events[:, 0]
y = events[:, 1]
t = events[:, 2]
events_normed[:, 1] = x / 127
events_normed[:, 2] = y / 127
t = t - np.min(t)
t = t / np.max(t)
events_normed[:, 0] = t
return events_normed, label
else:
return self.data[index], self.label[index]
def __len__(self):
return len(self.data)
if __name__ == '__main__':
DATADIR = 'data/DVS_C10_TS1_1024'
tr = DvsDataset(DATADIR, train=True)
length = len(tr)
print(length)