Skip to content

Using the Wisconsin breast cancer diagnostic data set for predictive analysis

Notifications You must be signed in to change notification settings

vrudhgarg/Breast-Cancer-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

Breast-Cancer-Prediction

Using the Wisconsin breast cancer diagnostic data set for predictive analysis

Description

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. n the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/

Also can be found on UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

Attribute Information:

  1. ID number

  2. Diagnosis (M = malignant, B = benign)

Ten real-valued features are computed for each cell nucleus:

a) radius (mean of distances from center to points on the perimeter)

b) texture (standard deviation of gray-scale values)

c) perimeter

d) area

e) smoothness (local variation in radius lengths)

f) compactness (perimeter^2 / area - 1.0)

g) concavity (severity of concave portions of the contour)

h) concave points (number of concave portions of the contour)

i) symmetry

j) fractal dimension ("coastline approximation" - 1)

The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.

All feature values are recoded with four significant digits.

About

Using the Wisconsin breast cancer diagnostic data set for predictive analysis

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published