-
Notifications
You must be signed in to change notification settings - Fork 37
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Doc]Add benchmark scripts #74
Open
Potabk
wants to merge
6
commits into
vllm-project:main
Choose a base branch
from
Potabk:benchmarks
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+2,473
−0
Open
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import json | ||
import os | ||
import sys | ||
import time | ||
import traceback | ||
from dataclasses import dataclass, field | ||
from typing import List, Optional, Union | ||
|
||
import aiohttp | ||
import huggingface_hub.constants | ||
from tqdm.asyncio import tqdm | ||
from transformers import (AutoTokenizer, PreTrainedTokenizer, | ||
PreTrainedTokenizerFast) | ||
|
||
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60) | ||
|
||
|
||
@dataclass | ||
class RequestFuncInput: | ||
prompt: str | ||
api_url: str | ||
prompt_len: int | ||
output_len: int | ||
model: str | ||
model_name: Optional[str] = None | ||
best_of: int = 1 | ||
logprobs: Optional[int] = None | ||
extra_body: Optional[dict] = None | ||
multi_modal_content: Optional[dict] = None | ||
ignore_eos: bool = False | ||
|
||
|
||
@dataclass | ||
class RequestFuncOutput: | ||
generated_text: str = "" | ||
success: bool = False | ||
latency: float = 0.0 | ||
output_tokens: int = 0 | ||
ttft: float = 0.0 # Time to first token | ||
itl: List[float] = field( | ||
default_factory=list) # List of inter-token latencies | ||
tpot: float = 0.0 # avg next-token latencies | ||
prompt_len: int = 0 | ||
error: str = "" | ||
|
||
|
||
async def async_request_openai_completions( | ||
request_func_input: RequestFuncInput, | ||
pbar: Optional[tqdm] = None, | ||
) -> RequestFuncOutput: | ||
api_url = request_func_input.api_url | ||
assert api_url.endswith( | ||
("completions", "profile") | ||
), "OpenAI Completions API URL must end with 'completions' or 'profile'." | ||
|
||
async with aiohttp.ClientSession(trust_env=True, | ||
timeout=AIOHTTP_TIMEOUT) as session: | ||
payload = { | ||
"model": request_func_input.model_name \ | ||
if request_func_input.model_name else request_func_input.model, | ||
"prompt": request_func_input.prompt, | ||
"temperature": 0.0, | ||
"best_of": request_func_input.best_of, | ||
"max_tokens": request_func_input.output_len, | ||
"logprobs": request_func_input.logprobs, | ||
"stream": True, | ||
"stream_options": { | ||
"include_usage": True, | ||
}, | ||
} | ||
if request_func_input.ignore_eos: | ||
payload["ignore_eos"] = request_func_input.ignore_eos | ||
if request_func_input.extra_body: | ||
payload.update(request_func_input.extra_body) | ||
headers = { | ||
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}" | ||
} | ||
|
||
output = RequestFuncOutput() | ||
output.prompt_len = request_func_input.prompt_len | ||
|
||
generated_text = "" | ||
st = time.perf_counter() | ||
most_recent_timestamp = st | ||
try: | ||
async with session.post(url=api_url, json=payload, | ||
headers=headers) as response: | ||
if response.status == 200: | ||
first_chunk_received = False | ||
async for chunk_bytes in response.content: | ||
chunk_bytes = chunk_bytes.strip() | ||
if not chunk_bytes: | ||
continue | ||
|
||
chunk = chunk_bytes.decode("utf-8").removeprefix( | ||
"data: ") | ||
if chunk != "[DONE]": | ||
data = json.loads(chunk) | ||
|
||
# NOTE: Some completion API might have a last | ||
# usage summary response without a token so we | ||
# want to check a token was generated | ||
if choices := data.get("choices"): | ||
# Note that text could be empty here | ||
# e.g. for special tokens | ||
text = choices[0].get("text") | ||
timestamp = time.perf_counter() | ||
# First token | ||
if not first_chunk_received: | ||
first_chunk_received = True | ||
ttft = time.perf_counter() - st | ||
output.ttft = ttft | ||
|
||
# Decoding phase | ||
else: | ||
output.itl.append(timestamp - | ||
most_recent_timestamp) | ||
|
||
most_recent_timestamp = timestamp | ||
generated_text += text or "" | ||
elif usage := data.get("usage"): | ||
output.output_tokens = usage.get( | ||
"completion_tokens") | ||
if first_chunk_received: | ||
output.success = True | ||
else: | ||
output.success = False | ||
output.error = ( | ||
"Never received a valid chunk to calculate TTFT." | ||
"This response will be marked as failed!") | ||
output.generated_text = generated_text | ||
output.latency = most_recent_timestamp - st | ||
else: | ||
output.error = response.reason or "" | ||
output.success = False | ||
except Exception: | ||
output.success = False | ||
exc_info = sys.exc_info() | ||
output.error = "".join(traceback.format_exception(*exc_info)) | ||
|
||
if pbar: | ||
pbar.update(1) | ||
return output | ||
|
||
|
||
def get_model(pretrained_model_name_or_path: str) -> str: | ||
if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true': | ||
from modelscope import snapshot_download | ||
|
||
model_path = snapshot_download( | ||
model_id=pretrained_model_name_or_path, | ||
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE, | ||
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"]) | ||
|
||
return model_path | ||
return pretrained_model_name_or_path | ||
|
||
|
||
def get_tokenizer( | ||
pretrained_model_name_or_path: str, | ||
tokenizer_mode: str = "auto", | ||
trust_remote_code: bool = False, | ||
**kwargs, | ||
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]: | ||
if pretrained_model_name_or_path is not None and not os.path.exists( | ||
pretrained_model_name_or_path): | ||
pretrained_model_name_or_path = get_model( | ||
pretrained_model_name_or_path) | ||
if tokenizer_mode == "slow": | ||
if kwargs.get("use_fast", False): | ||
raise ValueError( | ||
"Cannot use the fast tokenizer in slow tokenizer mode.") | ||
kwargs["use_fast"] = False | ||
if tokenizer_mode == "mistral": | ||
try: | ||
from vllm.transformers_utils.tokenizer import MistralTokenizer | ||
except ImportError as e: | ||
raise ImportError("MistralTokenizer requires vllm package.\n" | ||
"Please install it with `pip install vllm` " | ||
"to use mistral tokenizer mode.") from e | ||
return MistralTokenizer.from_pretrained( | ||
str(pretrained_model_name_or_path)) | ||
else: | ||
return AutoTokenizer.from_pretrained( | ||
pretrained_model_name_or_path, | ||
trust_remote_code=trust_remote_code, | ||
**kwargs, | ||
) | ||
|
||
|
||
ASYNC_REQUEST_FUNCS = { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Pls add note for the different with vLLM. |
||
"vllm": async_request_openai_completions, | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. same |
||
"""Benchmark the latency of processing a single batch of requests.""" | ||
import argparse | ||
import dataclasses | ||
import json | ||
import time | ||
from pathlib import Path | ||
from typing import List, Optional | ||
|
||
import numpy as np | ||
import torch | ||
from tqdm import tqdm | ||
from vllm import LLM, SamplingParams | ||
from vllm.engine.arg_utils import EngineArgs | ||
from vllm.inputs import PromptType | ||
from vllm.sampling_params import BeamSearchParams | ||
from vllm.utils import FlexibleArgumentParser | ||
|
||
|
||
def main(args: argparse.Namespace): | ||
print(args) | ||
|
||
engine_args = EngineArgs.from_cli_args(args) | ||
|
||
# NOTE(woosuk): If the request cannot be processed in a single batch, | ||
# the engine will automatically process the request in multiple batches. | ||
llm = LLM(**dataclasses.asdict(engine_args)) | ||
|
||
sampling_params = SamplingParams( | ||
n=args.n, | ||
temperature=1.0, | ||
top_p=1.0, | ||
ignore_eos=True, | ||
max_tokens=args.output_len, | ||
) | ||
print(sampling_params) | ||
dummy_prompt_token_ids = np.random.randint(10000, | ||
size=(args.batch_size, | ||
args.input_len)) | ||
dummy_prompts: List[PromptType] = [{ | ||
"prompt_token_ids": batch | ||
} for batch in dummy_prompt_token_ids.tolist()] | ||
|
||
def llm_generate(): | ||
if not args.use_beam_search: | ||
llm.generate(dummy_prompts, | ||
sampling_params=sampling_params, | ||
use_tqdm=False) | ||
else: | ||
llm.beam_search( | ||
dummy_prompts, | ||
BeamSearchParams( | ||
beam_width=args.n, | ||
max_tokens=args.output_len, | ||
ignore_eos=True, | ||
)) | ||
|
||
def run_to_completion(profile_dir: Optional[str] = None): | ||
if profile_dir: | ||
with torch.profiler.profile( | ||
activities=[ | ||
torch.profiler.ProfilerActivity.CPU, | ||
torch.profiler.ProfilerActivity.CUDA, | ||
], | ||
on_trace_ready=torch.profiler.tensorboard_trace_handler( | ||
str(profile_dir))) as p: | ||
llm_generate() | ||
print(p.key_averages().table(sort_by="self_cuda_time_total")) | ||
else: | ||
start_time = time.perf_counter() | ||
llm_generate() | ||
end_time = time.perf_counter() | ||
latency = end_time - start_time | ||
return latency | ||
|
||
print("Warming up...") | ||
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"): | ||
run_to_completion(profile_dir=None) | ||
|
||
if args.profile: | ||
profile_dir = args.profile_result_dir | ||
if not profile_dir: | ||
profile_dir = Path( | ||
"." | ||
) / "vllm_benchmark_result" / f"latency_result_{time.time()}" | ||
print(f"Profiling (results will be saved to '{profile_dir}')...") | ||
run_to_completion(profile_dir=profile_dir) | ||
return | ||
|
||
# Benchmark. | ||
latencies = [] | ||
|
||
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"): | ||
latencies.append(run_to_completion(profile_dir=None)) | ||
latencies = np.array(latencies) | ||
percentages = [10, 25, 50, 75, 90, 99] | ||
percentiles = np.percentile(latencies, percentages) | ||
print(f'Avg latency: {np.mean(latencies)} seconds') | ||
for percentage, percentile in zip(percentages, percentiles): | ||
print(f'{percentage}% percentile latency: {percentile} seconds') | ||
|
||
# Output JSON results if specified | ||
if args.output_json: | ||
results = { | ||
"avg_latency": np.mean(latencies), | ||
"latencies": latencies.tolist(), | ||
"percentiles": dict(zip(percentages, percentiles.tolist())), | ||
} | ||
with open(args.output_json, "w") as f: | ||
json.dump(results, f, indent=4) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = FlexibleArgumentParser( | ||
description='Benchmark the latency of processing a single batch of ' | ||
'requests till completion.') | ||
parser.add_argument('--input-len', type=int, default=32) | ||
parser.add_argument('--output-len', type=int, default=128) | ||
parser.add_argument('--batch-size', type=int, default=8) | ||
parser.add_argument('--n', | ||
type=int, | ||
default=1, | ||
help='Number of generated sequences per prompt.') | ||
parser.add_argument('--use-beam-search', action='store_true') | ||
parser.add_argument('--num-iters-warmup', | ||
type=int, | ||
default=10, | ||
help='Number of iterations to run for warmup.') | ||
parser.add_argument('--num-iters', | ||
type=int, | ||
default=30, | ||
help='Number of iterations to run.') | ||
parser.add_argument( | ||
'--profile', | ||
action='store_true', | ||
help='profile the generation process of a single batch') | ||
parser.add_argument( | ||
'--profile-result-dir', | ||
type=str, | ||
default=None, | ||
help=('path to save the pytorch profiler output. Can be visualized ' | ||
'with ui.perfetto.dev or Tensorboard.')) | ||
parser.add_argument( | ||
'--output-json', | ||
type=str, | ||
default=None, | ||
help='Path to save the latency results in JSON format.') | ||
|
||
parser = EngineArgs.add_cli_args(parser) | ||
args = parser.parse_args() | ||
main(args) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.