Skip to content

Commit

Permalink
[Doc] Update doc to work with release (#85)
Browse files Browse the repository at this point in the history
1. Update CANN image name
2. Add pta install step
3. update vllm-ascend docker image name to ghcr
4. update quick_start to use vllm-ascend image directly.
5. fix `note` style

Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
  • Loading branch information
wangxiyuan authored Feb 19, 2025
1 parent 17de078 commit fafd70e
Show file tree
Hide file tree
Showing 11 changed files with 120 additions and 133 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/vllm_ascend_test.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ jobs:
runs-on: ascend-arm64 # actionlint-ignore: runner-label

container:
image: quay.io/ascend/cann:8.0.0.beta1-910b-ubuntu22.04-py3.10
image: quay.io/ascend/cann:8.0.0-910b-ubuntu22.04-py3.10
volumes:
- /usr/local/dcmi:/usr/local/dcmi
- /usr/local/bin/npu-smi:/usr/local/bin/npu-smi
Expand Down
2 changes: 1 addition & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
# limitations under the License.
#

FROM quay.io/ascend/cann:8.0.0.beta1-910b-ubuntu22.04-py3.10
FROM quay.io/ascend/cann:8.0.0-910b-ubuntu22.04-py3.10

# Define environments
ENV DEBIAN_FRONTEND=noninteractive
Expand Down
5 changes: 4 additions & 1 deletion docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,10 @@
'vllm_version': 'main',
# the branch of vllm-ascend, used in vllm-ascend clone and image tag
# such as 'main', 'v0.7.1-dev', 'v0.7.1rc1'
'vllm_ascend_version': 'main'
'vllm_ascend_version': 'main',
# the newest release version of vllm, used in quick start or container image tag.
# This value should be updated when cut down release.
'vllm_newest_release_version': "v0.7.1.rc1",
}

# Add any paths that contain templates here, relative to this directory.
Expand Down
5 changes: 3 additions & 2 deletions docs/source/developer_guide/contributing.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,8 +98,9 @@ Only specific types of PRs will be reviewed. The PR title is prefixed appropriat
- `[CI]` for build or continuous integration improvements.
- `[Misc]` for PRs that do not fit the above categories. Please use this sparingly.

> [!NOTE]
> If the PR spans more than one category, please include all relevant prefixes.
:::{note}
If the PR spans more than one category, please include all relevant prefixes.
:::

## Others

Expand Down
4 changes: 2 additions & 2 deletions docs/source/developer_guide/versioning_policy.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,15 +43,15 @@ Usually, each minor version of vLLM (such as 0.7) will correspond to a vllm-asce
| Branch | Status | Note |
|-----------|------------|--------------------------------------|
| main | Maintained | CI commitment for vLLM main branch |
| 0.7.1-dev | Maintained | CI commitment for vLLM 0.7.1 version |
| v0.7.1-dev | Maintained | CI commitment for vLLM 0.7.1 version |

## Release Compatibility Matrix

Following is the Release Compatibility Matrix for vLLM Ascend Plugin:

| vllm-ascend | vLLM | Python | Stable CANN | PyTorch/torch_npu |
|--------------|--------------| --- | --- | --- |
| v0.7.x (TBD) | v0.7.x (TBD) | 3.9 - 3.12 | 8.0.0.beta1 | 2.5.1 / 2.5.1rc1 |
| v0.7.1.rc1 | v0.7.1 | 3.9 - 3.12 | 8.0.0 | 2.5.1 / 2.5.1.dev20250218 |

## Release cadence

Expand Down
4 changes: 2 additions & 2 deletions docs/source/developer_guide/versioning_policy.zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,15 +43,15 @@ vllm-ascend有主干和开发两种分支。
| 分支 | 状态 | 备注 |
|-----------|------------|--------------------------------------|
| main | Maintained | 基于vLLM main分支CI看护 |
| 0.7.1-dev | Maintained | 基于vLLM 0.7.1版本CI看护 |
| v0.7.1-dev | Maintained | 基于vLLM 0.7.1版本CI看护 |

## 版本配套

vLLM Ascend Plugin (`vllm-ascend`) 的关键配套关系如下:

| vllm-ascend | vLLM | Python | Stable CANN | PyTorch/torch_npu |
|--------------|---------| --- | --- | --- |
| v0.7.x (TBD) | v0.7.x (TBD) | 3.9 - 3.12 | 8.0.0.beta1 | 2.5.1 / 2.5.1rc1 |
| v0.7.1rc1 | v0.7.1 | 3.9 - 3.12 | 8.0.0 | 2.5.1 / 2.5.1.dev20250218 |

## 发布节奏

Expand Down
86 changes: 56 additions & 30 deletions docs/source/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ This document describes how to install vllm-ascend manually.

| Software | Supported version | Note |
| ------------ | ----------------- | ---- |
| CANN | >= 8.0.0.beta1 | Required for vllm-ascend and torch-npu |
| CANN | >= 8.0.0 | Required for vllm-ascend and torch-npu |
| torch-npu | >= 2.5.1rc1 | Required for vllm-ascend |
| torch | >= 2.5.1 | Required for torch-npu and vllm |

Expand Down Expand Up @@ -46,7 +46,7 @@ The easiest way to prepare your software environment is using CANN image directl

```bash
# Update DEVICE according to your device (/dev/davinci[0-7])
DEVICE=/dev/davinci7
export DEVICE=/dev/davinci7

docker run --rm \
--name vllm-ascend-env \
Expand All @@ -59,11 +59,14 @@ docker run --rm \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-it quay.io/ascend/cann:8.0.0.beta1-910b-ubuntu22.04-py3.10 bash
-it quay.io/ascend/cann:8.0.0-910b-ubuntu22.04-py3.10 bash
```

You can also install CANN manually:
> NOTE: This guide takes aarc64 as an example. If you run on x86, you need to replace `aarch64` with `x86_64` for the package name shown below.

:::{note}
This guide takes aarch64 as an example. If you run on x86, you need to replace `aarch64` with `x86_64` for the package name shown below.
:::

```bash
# Create a virtual environment
Expand All @@ -83,11 +86,11 @@ chmod +x ./Ascend-cann-kernels-910b_8.0.0_linux-aarch64.run
./Ascend-cann-kernels-910b_8.0.0_linux-aarch64.run --install

wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/CANN%208.0.0/Ascend-cann-nnal_8.0.0_linux-aarch64.run
chmod +x./Ascend-cann-nnal_8.0.0_linux-aarch64.run
chmod +x. /Ascend-cann-nnal_8.0.0_linux-aarch64.run
./Ascend-cann-nnal_8.0.0_linux-aarch64.run --install

source /usr/local/Ascend/ascend-toolkit/set_env.sh
source /usr/local/Ascend/nnal/set_env.sh
source /usr/local/Ascend/nnal/atb/set_env.sh
```

::::
Expand All @@ -112,7 +115,30 @@ Once it's done, you can start to set up `vllm` and `vllm-ascend`.
You can install `vllm` and `vllm-ascend` from **pre-built wheel**:

```bash
pip install vllm vllm-ascend -f https://download.pytorch.org/whl/torch/
# Install vllm from source, since `pip install vllm` doesn't work on CPU currently.
# It'll be fixed in the next vllm release, e.g. v0.7.3.
git clone --branch v0.7.1 https://github.com/vllm-project/vllm
cd vllm
VLLM_TARGET_DEVICE=empty pip install . -f https://download.pytorch.org/whl/torch/

# Install vllm-ascend from pypi.
pip install vllm-ascend -f https://download.pytorch.org/whl/torch/

# Once the packages are installed, you need to install `torch-npu` manually,
# because that vllm-ascend relies on an unreleased version of torch-npu.
# This step will be removed in the next vllm-ascend release.
#
# Here we take python 3.10 on aarch64 as an example. Feel free to install the correct version for your environment. See:
#
# https://pytorch-package.obs.cn-north-4.myhuaweicloud.com/pta/Daily/v2.5.1/20250218.4/pytorch_v2.5.1_py39.tar.gz
# https://pytorch-package.obs.cn-north-4.myhuaweicloud.com/pta/Daily/v2.5.1/20250218.4/pytorch_v2.5.1_py310.tar.gz
# https://pytorch-package.obs.cn-north-4.myhuaweicloud.com/pta/Daily/v2.5.1/20250218.4/pytorch_v2.5.1_py311.tar.gz
#
mkdir pta
cd pta
wget https://pytorch-package.obs.cn-north-4.myhuaweicloud.com/pta/Daily/v2.5.1/20250218.4/pytorch_v2.5.1_py310.tar.gz
tar -xvf pytorch_v2.5.1_py310.tar.gz
pip install ./torch_npu-2.5.1.dev20250218-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
```

or build from **source code**:
Expand All @@ -136,7 +162,9 @@ pip install -e . -f https://download.pytorch.org/whl/torch/

You can just pull the **prebuilt image** and run it with bash.

```bash
```{code-block} bash
:substitutions:
# Update DEVICE according to your device (/dev/davinci[0-7])
DEVICE=/dev/davinci7
# Update the vllm-ascend image
Expand Down Expand Up @@ -185,7 +213,7 @@ prompts = [
]

# Create a sampling params object.
sampling_params = SamplingParams(max_tokens=100, temperature=0.0)
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="Qwen/Qwen2.5-0.5B-Instruct")

Expand All @@ -207,25 +235,23 @@ python example.py
The output will be like:

```bash
INFO 02-18 02:33:37 __init__.py:28] Available plugins for group vllm.platform_plugins:
INFO 02-18 02:33:37 __init__.py:30] name=ascend, value=vllm_ascend:register
INFO 02-18 02:33:37 __init__.py:32] all available plugins for group vllm.platform_plugins will be loaded.
INFO 02-18 02:33:37 __init__.py:34] set environment variable VLLM_PLUGINS to control which plugins to load.
INFO 02-18 02:33:37 __init__.py:42] plugin ascend loaded.
INFO 02-18 02:33:37 __init__.py:174] Platform plugin ascend is activated
INFO 02-18 02:33:50 config.py:526] This model supports multiple tasks: {'reward', 'embed', 'generate', 'score', 'classify'}. Defaulting to 'generate'.
INFO 02-18 02:33:50 llm_engine.py:232] Initializing a V0 LLM engine (v0.7.1) with config: model='Qwen/Qwen2.5-0.5B-Instruct', speculative_config=None, tokenizer='./opt-125m', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=2048, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=npu, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=./opt-125m, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=False, chunked_prefill_enabled=False, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=False,
INFO 02-18 02:33:52 importing.py:14] Triton not installed or not compatible; certain GPU-related functions will not be available.
Loading pt checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s]
Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 4.30it/s]
Loading pt checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 4.29it/s]

INFO 02-18 02:33:59 executor_base.py:108] # CPU blocks: 98559, # CPU blocks: 7281
INFO 02-18 02:33:59 executor_base.py:113] Maximum concurrency for 2048 tokens per request: 769.99x
INFO 02-18 02:33:59 llm_engine.py:429] init engine (profile, create kv cache, warmup model) took 1.52 seconds
Processed prompts: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 4.92it/s, est. speed input: 31.99 toks/s, output: 78.73 toks/s]
Prompt: 'Hello, my name is', Generated text: ' John, I am the daughter of Bill and Jocelyn, I am married'
Prompt: 'The president of the United States is', Generated text: " States President. I don't like him.\nThis is my favorite comment so"
Prompt: 'The capital of France is', Generated text: " Texas and everyone I've spoken to in the city knows the state's name,"
Prompt: 'The future of AI is', Generated text: ' people trying to turn a good computer into a machine, not a computer being human'
INFO 02-18 08:49:58 __init__.py:28] Available plugins for group vllm.platform_plugins:
INFO 02-18 08:49:58 __init__.py:30] name=ascend, value=vllm_ascend:register
INFO 02-18 08:49:58 __init__.py:32] all available plugins for group vllm.platform_plugins will be loaded.
INFO 02-18 08:49:58 __init__.py:34] set environment variable VLLM_PLUGINS to control which plugins to load.
INFO 02-18 08:49:58 __init__.py:42] plugin ascend loaded.
INFO 02-18 08:49:58 __init__.py:174] Platform plugin ascend is activated
INFO 02-18 08:50:12 config.py:526] This model supports multiple tasks: {'embed', 'classify', 'generate', 'score', 'reward'}. Defaulting to 'generate'.
INFO 02-18 08:50:12 llm_engine.py:232] Initializing a V0 LLM engine (v0.7.1) with config: model='./Qwen2.5-0.5B-Instruct', speculative_config=None, tokenizer='./Qwen2.5-0.5B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=32768, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=npu, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=./Qwen2.5-0.5B-Instruct, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=False, chunked_prefill_enabled=False, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=False,
Loading safetensors checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 5.86it/s]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 5.85it/s]
INFO 02-18 08:50:24 executor_base.py:108] # CPU blocks: 35064, # CPU blocks: 2730
INFO 02-18 08:50:24 executor_base.py:113] Maximum concurrency for 32768 tokens per request: 136.97x
INFO 02-18 08:50:25 llm_engine.py:429] init engine (profile, create kv cache, warmup model) took 3.87 seconds
Processed prompts: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 8.46it/s, est. speed input: 46.55 toks/s, output: 135.41 toks/s]
Prompt: 'Hello, my name is', Generated text: " Shinji, a teenage boy from New York City. I'm a computer science"
Prompt: 'The president of the United States is', Generated text: ' a very important person. When he or she is elected, many people think that'
Prompt: 'The capital of France is', Generated text: ' Paris. The oldest part of the city is Saint-Germain-des-Pr'
Prompt: 'The future of AI is', Generated text: ' not bright\n\nThere is no doubt that the evolution of AI will have a huge'
```
101 changes: 20 additions & 81 deletions docs/source/quick_start.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,100 +6,40 @@
- Atlas A2 Training series (Atlas 800T A2, Atlas 900 A2 PoD, Atlas 200T A2 Box16, Atlas 300T A2)
- Atlas 800I A2 Inference series (Atlas 800I A2)

<!-- TODO(yikun): replace "Prepare Environment" and "Installation" with "Running with vllm-ascend container image" -->

### Prepare Environment

You can use the container image directly with one line command:

```bash
# Update DEVICE according to your device (/dev/davinci[0-7])
DEVICE=/dev/davinci7
IMAGE=quay.io/ascend/cann:8.0.rc3.beta1-910b-ubuntu22.04-py3.10
docker run \
--name vllm-ascend-env --device $DEVICE \
--device /dev/davinci_manager --device /dev/devmm_svm --device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-it --rm $IMAGE bash
```

You can verify by running below commands in above container shell:

```bash
npu-smi info
```

You will see following message:

```
+-------------------------------------------------------------------------------------------+
| npu-smi 23.0.2 Version: 23.0.2 |
+----------------------+---------------+----------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)|
| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
+======================+===============+====================================================+
| 0 xxx | OK | 0.0 40 0 / 0 |
| 0 | 0000:C1:00.0 | 0 882 / 15169 0 / 32768 |
+======================+===============+====================================================+
```


## Installation

Prepare:

```bash
apt update
apt install git curl vim -y
# Config pypi mirror to speedup
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```

Create your venv

```bash
python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
```

You can install vLLM and vllm-ascend plugin by using:
## Setup environment using container

```{code-block} bash
:substitutions:
# Install vLLM (About 5 mins)
git clone --depth 1 --branch |vllm_version| https://github.com/vllm-project/vllm.git
cd vllm
VLLM_TARGET_DEVICE=empty pip install .
cd ..
# Install vLLM Ascend Plugin:
git clone --depth 1 --branch |vllm_ascend_version| https://github.com/vllm-project/vllm-ascend.git
cd vllm-ascend
pip install -e .
cd ..
```
# You can change version a suitable one base on your requirement, e.g. main
export IMAGE=ghcr.io/vllm-project/vllm-ascend:|vllm_newest_release_version|
docker run \
--name vllm-ascend \
--device /dev/davinci0 \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-p 8000:8000 \
-it $IMAGE bash
```

## Usage

After vLLM and vLLM Ascend plugin installation, you can start to
try [vLLM QuickStart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html).

You have two ways to start vLLM on Ascend NPU:
There are two ways to start vLLM on Ascend NPU:

### Offline Batched Inference with vLLM

With vLLM installed, you can start generating texts for list of input prompts (i.e. offline batch inferencing).

```bash
# Use Modelscope mirror to speed up download
pip install modelscope
export VLLM_USE_MODELSCOPE=true
```

Expand Down Expand Up @@ -132,7 +72,6 @@ the following command to start the vLLM server with the

```bash
# Use Modelscope mirror to speed up download
pip install modelscope
export VLLM_USE_MODELSCOPE=true
# Deploy vLLM server (The first run will take about 3-5 mins (10 MB/s) to download models)
vllm serve Qwen/Qwen2.5-0.5B-Instruct &
Expand Down Expand Up @@ -178,7 +117,7 @@ kill -2 $VLLM_PID

You will see output as below:
```
INFO 02-12 03:34:10 launcher.py:59] Shutting down FastAPI HTTP server.
INFO: Shutting down FastAPI HTTP server.
INFO: Shutting down
INFO: Waiting for application shutdown.
INFO: Application shutdown complete.
Expand Down
Loading

0 comments on commit fafd70e

Please sign in to comment.