-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
153 lines (126 loc) · 5.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2020 Vincent Liu
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
""" Dataset class for preprocessing and loading text and audio. """
from librosa.core import load
from librosa.util import normalize
import numpy as np
import os
from pathlib import Path
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset
from modules.mel import MelSpectrogram
from modules.phonemizer import cmudict, text_to_sequence
from modules.utils import get_preprocessing_fn
def files_to_list(filename):
""" Takes a text file of filenames and makes a list of filenames. """
with open(filename, encoding="utf-8") as f:
files = f.readlines()
files = [f.rstrip() for f in files]
return files
def load_metadata(filename):
""" Loads transcriptions from metadata csv. """
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split("|")[:2] for line in f]
return dict(filepaths_and_text)
class AudioDataset(Dataset):
""" Dataset for handling audio io.
Args:
audio_files: path to file containing list of training audio files
meta_file: path to metadata.csv
cmudict_file: path to cmu phoneme dictionary
segment_length: length of audio segment to truncate or pad to
length_scale: upsampling factor of model, so that audio segments are aligned to this resolution
sampling_rate: sampling rate of the model and audio files
rescale_factor: factor by which to rescale the audio in preprocessing
mu_law: whether to apply mu law transform in preprocessing.
"""
def __init__(
self,
audio_files: str,
meta_file: str,
cmudict_file: str,
segment_length: int,
length_scale: int,
sampling_rate: int,
mu_law: bool = True,
):
super().__init__()
self.sampling_rate = sampling_rate
self.segment_length = segment_length
self.length_scale = length_scale
self.slice_length = segment_length // length_scale
self.audio_files = files_to_list(audio_files)
self.audio_files = [Path(audio_files).parent / x for x in self.audio_files]
self.metadata = load_metadata(meta_file)
self.text_fn = cmudict.CMUDict(cmudict_file)
self.pre_fn = get_preprocessing_fn(mu_law=mu_law)
@torch.no_grad()
def __getitem__(self, index):
# Process audio.
filename = self.audio_files[index]
audio, sampling_rate = self.load_wav_to_torch(filename)
audio = audio[:audio.size(0) - audio.size(0) % self.length_scale] # should be ok since length_scale << sampling_rate
audio_len = audio.size(0)
if audio.size(0) < self.segment_length:
audio_offset = 0
audio = F.pad(
audio, (0, self.segment_length - audio.size(0)), "constant"
)
else:
max_audio_offset = (audio.size(0) - self.segment_length) // self.length_scale # grid offset to be multiples of length_scale (upsampling factor)
audio_offset = random.randint(0, max_audio_offset) * self.length_scale
audio = audio[audio_offset:audio_offset + self.segment_length]
# Apply preprocessing.
audio = self.pre_fn(audio)
# Process text.
text = self.metadata[os.path.splitext(os.path.basename(filename))[0]]
text = text_to_sequence(text, ["english_cleaners"], self.text_fn)
text = torch.LongTensor(text)
text_len = text.size(0)
# Audio len and offset are in downsampled resolutions.
return text, text_len, audio, audio_len // self.length_scale, audio_offset // self.length_scale, self.slice_length
def __len__(self):
return len(self.audio_files)
@staticmethod
@torch.no_grad()
def collate_fn(batch):
# Unpack batch and compute lengths.
text, text_len, audio, audio_len, audio_offset, slice_length = zip(*batch)
x_len = torch.LongTensor(text_len)
y_len = torch.LongTensor(audio_len)
y_offset = torch.LongTensor(audio_offset)
slice_length = torch.LongTensor(slice_length)
# Create padded tensors.
x = torch.LongTensor(len(batch), x_len.max())
x.zero_()
y = torch.stack(audio, dim=0) # All audio loaded will be segments.
# Populate padded tensors.
for i in range(len(batch)):
x[i, :len(text[i])] = text[i]
return x, x_len, y, y_len, y_offset, slice_length
def load_wav_to_torch(self, full_path):
""" Loads wavdata into torch array. """
audio, sampling_rate = load(full_path, sr=self.sampling_rate)
audio = torch.from_numpy(audio).float()
return audio, sampling_rate