-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnets.py
550 lines (483 loc) · 20.1 KB
/
resnets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152
# based on the 'Deep Residual Learning for Image Recognition' paper
# by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
# https://arxiv.org/pdf/1512.03385.pdf
from typing import Optional, Tuple, Union
from tensorflow.keras import Input
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.regularizers import Regularizer
from tensorflow.keras.initializers import Initializer
from tensorflow.keras.layers import (
Dropout,
Rescaling,
Conv2D,
MaxPooling2D,
Dense,
GlobalAveragePooling2D,
Add,
BatchNormalization,
ReLU,
Softmax,
Flatten,
Layer,
)
def ResidualBlockLarge(
x_in,
filters: Tuple[int, int, int],
s: int = 1,
reduce: bool = False,
kernel_regularizer: Optional[Union[Regularizer, str]] = None,
kernel_initializer: Union[Initializer, str] = "he_uniform",
):
"""
Create a ResNet block with 3 layers
:param x_in: input tensor
:param filters: number of filters in each layer
:param s: stride used when reducing the input tensor
:param reduce: whether to reduce the input tensor
:param kernel_regularizer: kernel regularizer
:param kernel_initializer: the kernel initializer to use
:return: output tensor
"""
filters1, filters2, filters3 = filters
y_out = Conv2D(
filters1,
kernel_size=(1, 1),
strides=(s, s),
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(x_in)
y_out = BatchNormalization()(y_out)
y_out = ReLU()(y_out)
y_out = Conv2D(
filters2,
kernel_size=(3, 3),
padding="same",
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(y_out)
y_out = BatchNormalization()(y_out)
y_out = ReLU()(y_out)
y_out = Conv2D(
filters3,
kernel_size=(1, 1),
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(y_out)
y_out = BatchNormalization()(y_out)
if reduce:
x_in = Conv2D(
filters3,
kernel_size=(1, 1),
strides=(s, s),
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(x_in)
x_in = BatchNormalization()(x_in)
y_out = Add()([y_out, x_in])
return ReLU()(y_out)
def ResidualBlockSmall(
x_in,
filters: Tuple[int, int],
s: int = 1,
reduce: bool = False,
kernel_regularizer: Optional[Union[Regularizer, str]] = None,
kernel_initializer: Union[Initializer, str] = "he_uniform",
):
"""
Create a ResNet block with 2 layers
:param x_in: input tensor
:param filters: number of filters in each layer
:param s: stride used when reducing the input tensor
:param reduce: whether to reduce the input tensor
:param kernel_regularizer: kernel regularizer
:param kernel_initializer: the kernel initializer to use
:return: output tensor
"""
filters1, filters2 = filters
y_out = Conv2D(
filters1,
kernel_size=(3, 3),
strides=(s, s),
padding="same",
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(x_in)
y_out = BatchNormalization()(y_out)
y_out = ReLU()(y_out)
y_out = Conv2D(
filters2,
kernel_size=(3, 3),
padding="same",
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(y_out)
y_out = BatchNormalization()(y_out)
y_out = ReLU()(y_out)
if reduce:
x_in = Conv2D(
filters2,
kernel_size=(1, 1),
strides=(s, s),
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(x_in)
x_in = BatchNormalization()(x_in)
y_out = Add()([y_out, x_in])
return ReLU()(y_out)
def ResNet(
input_shape: Tuple[int, int, int],
block_sizes: Tuple[int, int, int, int],
net_size: str,
output_units: int = 1000,
include_top: bool = True,
after_input: Optional[Union[Sequential, Layer]] = None,
normalize: bool = False,
kernel_regularizer: Optional[Union[Regularizer, str]] = None,
kernel_initializer: Union[Initializer, str] = "he_uniform",
flatten: bool = False,
dropout_rate: float = 0.0,
) -> Model:
"""
Create one of ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152
:param input_shape: Shape of the input images.
:param block_sizes: Number of layers in each block.
:param net_size: Size of ResNet 'small' for ResNet-18 and ResNet-34, 'large' for ResNet-50, ResNet-101, and ResNet-152.
:param output_units: Number of output units used in the last layer if include_top is True (default: 1000).
:param include_top: Whether to include the network top after global average pooling or the flatten layer (default: True).
:param after_input: Custom layers to add after the input like preprocessing layers as a Keras model of class
tf.keras.Sequential or as a single layer of class tf.keras.layers.Layer (default: None - no custom layers).
:param normalize: Whether to normalize the input images to the range [0, 1] (default: False).
:param kernel_regularizer: Kernel regularizer of class tf.keras.regularizers.Regularizer or as a string (default: None).
:param kernel_initializer: Kernel initializer of class tf.keras.initializers.Initializer or as a string (default: "he_uniform").
:param flatten: Whether to use a flatten layer instead of a global average pooling layer after the last block
(default: False - use global average pooling).
:param dropout_rate: Dropout rate used after global average pooling or flattening (default: 0.0).
:return: ResNet model.
"""
if net_size not in ("small", "large"):
raise ValueError("Invalid net_size value. Must be 'small' or 'large'.")
x_in = Input(shape=input_shape)
y_out = x_in
if normalize:
y_out = Rescaling(scale=1.0 / 255)(y_out)
if after_input is not None:
y_out = after_input(y_out)
y_out = Conv2D(
64,
kernel_size=(7, 7),
strides=(2, 2),
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(y_out)
y_out = BatchNormalization()(y_out)
y_out = ReLU()(y_out)
y_out = MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(y_out)
block1, block2, block3, block4 = block_sizes
for layer in range(block1):
y_out = (
ResidualBlockLarge(
y_out,
(64, 64, 256),
s=2 if layer == 0 else 1,
reduce=layer == 0,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)
if net_size == "large"
else ResidualBlockSmall(
y_out,
(64, 64),
s=1,
reduce=False,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)
)
for layer in range(block2):
y_out = (
ResidualBlockLarge(
y_out,
(128, 128, 512),
s=2 if layer == 0 else 1,
reduce=layer == 0,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)
if net_size == "large"
else ResidualBlockSmall(
y_out,
(128, 128),
s=2 if layer == 0 else 1,
reduce=layer == 0,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)
)
for layer in range(block3):
y_out = (
ResidualBlockLarge(
y_out,
(256, 256, 1024),
s=2 if layer == 0 else 1,
reduce=layer == 0,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)
if net_size == "large"
else ResidualBlockSmall(
y_out,
(256, 256),
s=2 if layer == 0 else 1,
reduce=layer == 0,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)
)
for layer in range(block4):
y_out = (
ResidualBlockLarge(
y_out,
(512, 512, 2048),
s=2 if layer == 0 else 1,
reduce=layer == 0,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)
if net_size == "large"
else ResidualBlockSmall(
y_out,
(512, 512),
s=2 if layer == 0 else 1,
reduce=layer == 0,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)
)
y_out = Flatten()(y_out) if flatten else GlobalAveragePooling2D()(y_out)
if dropout_rate > 0.0:
y_out = Dropout(dropout_rate)(y_out)
if include_top:
y_out = Dense(
output_units,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
)(y_out)
y_out = Softmax()(y_out)
return Model(inputs=x_in, outputs=y_out)
def ResNet18(
input_shape: Tuple[int, int, int],
output_units: int = 1000,
include_top: bool = True,
after_input: Optional[Union[Sequential, Layer]] = None,
normalize: bool = False,
kernel_regularizer: Optional[Union[Regularizer, str]] = None,
kernel_initializer: Union[Initializer, str] = "he_uniform",
flatten: bool = False,
dropout_rate: float = 0.0,
) -> Model:
"""
Create a ResNet-18 model.
:param input_shape: Shape of the input images.
:param output_units: Number of output units used in the last layer if include_top is True (default: 1000).
:param include_top: Whether to include the network top after global average pooling or the flatten layer (default: True).
:param after_input: Custom layers to add after the input like preprocessing layers as a Keras model of class
tf.keras.Sequential or as a single layer of class tf.keras.layers.Layer (default: None - no custom layers).
:param normalize: Whether to normalize the input images to the range [0, 1] (default: False).
:param kernel_regularizer: Kernel regularizer of class tf.keras.regularizers.Regularizer or as a string (default: None).
:param kernel_initializer: Kernel initializer of class tf.keras.initializers.Initializer or as a string (default: "he_uniform").
:param flatten: Whether to use a flatten layer instead of a global average pooling layer after the last block
(default: False - use global average pooling).
:param dropout_rate: Dropout rate used after global average pooling or flattening (default: 0.0).
:return: ResNet-18 model.
"""
return ResNet(
input_shape,
(2, 2, 2, 2),
"small",
output_units=output_units,
include_top=include_top,
after_input=after_input,
normalize=normalize,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
flatten=flatten,
dropout_rate=dropout_rate,
)
def ResNet34(
input_shape: Tuple[int, int, int],
output_units: int = 1000,
include_top: bool = True,
after_input: Optional[Union[Sequential, Layer]] = None,
normalize: bool = False,
kernel_regularizer: Optional[Union[Regularizer, str]] = None,
kernel_initializer: Union[Initializer, str] = "he_uniform",
flatten: bool = False,
dropout_rate: float = 0.0,
) -> Model:
"""
Create a ResNet-34 model.
:param input_shape: Shape of the input images.
:param output_units: Number of output units used in the last layer if include_top is True (default: 1000).
:param include_top: Whether to include the network top after global average pooling or the flatten layer (default: True).
:param after_input: Custom layers to add after the input like preprocessing layers as a Keras model of class
tf.keras.Sequential or as a single layer of class tf.keras.layers.Layer (default: None - no custom layers).
:param normalize: Whether to normalize the input images to the range [0, 1] (default: False).
:param kernel_regularizer: Kernel regularizer of class tf.keras.regularizers.Regularizer or as a string (default: None).
:param kernel_initializer: Kernel initializer of class tf.keras.initializers.Initializer or as a string (default: "he_uniform").
:param flatten: Whether to use a flatten layer instead of a global average pooling layer after the last block
(default: False - use global average pooling).
:param dropout_rate: Dropout rate used after global average pooling or flattening (default: 0.0).
:return: ResNet-34 model.
"""
return ResNet(
input_shape,
(3, 4, 6, 3),
"small",
output_units=output_units,
include_top=include_top,
after_input=after_input,
normalize=normalize,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
flatten=flatten,
dropout_rate=dropout_rate,
)
def ResNet50(
input_shape: Tuple[int, int, int],
output_units: int = 1000,
include_top: bool = True,
after_input: Optional[Union[Sequential, Layer]] = None,
normalize: bool = False,
kernel_regularizer: Optional[Union[Regularizer, str]] = None,
kernel_initializer: Union[Initializer, str] = "he_uniform",
flatten: bool = False,
dropout_rate: float = 0.0,
) -> Model:
"""
Create a ResNet-50 model.
:param input_shape: Shape of the input images.
:param output_units: Number of output units used in the last layer if include_top is True (default: 1000).
:param include_top: Whether to include the network top after global average pooling or the flatten layer (default: True).
:param after_input: Custom layers to add after the input like preprocessing layers as a Keras model of class
tf.keras.Sequential or as a single layer of class tf.keras.layers.Layer (default: None - no custom layers).
:param normalize: Whether to normalize the input images to the range [0, 1] (default: False).
:param kernel_regularizer: Kernel regularizer of class tf.keras.regularizers.Regularizer or as a string (default: None).
:param kernel_initializer: Kernel initializer of class tf.keras.initializers.Initializer or as a string (default: "he_uniform").
:param flatten: Whether to use a flatten layer instead of a global average pooling layer after the last block
(default: False - use global average pooling).
:param dropout_rate: Dropout rate used after global average pooling or flattening (default: 0.0).
:return: ResNet-50 model.
"""
return ResNet(
input_shape,
(3, 4, 6, 3),
"large",
output_units=output_units,
include_top=include_top,
after_input=after_input,
normalize=normalize,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
flatten=flatten,
dropout_rate=dropout_rate,
)
def ResNet101(
input_shape: Tuple[int, int, int],
output_units: int = 1000,
include_top: bool = True,
after_input: Optional[Union[Sequential, Layer]] = None,
normalize: bool = False,
kernel_regularizer: Optional[Union[Regularizer, str]] = None,
kernel_initializer: Union[Initializer, str] = "he_uniform",
flatten: bool = False,
dropout_rate: float = 0.0,
) -> Model:
"""
Create a ResNet-101 model.
:param input_shape: Shape of the input images.
:param output_units: Number of output units used in the last layer if include_top is True (default: 1000).
:param include_top: Whether to include the network top after global average pooling or the flatten layer (default: True).
:param after_input: Custom layers to add after the input like preprocessing layers as a Keras model of class
tf.keras.Sequential or as a single layer of class tf.keras.layers.Layer (default: None - no custom layers).
:param normalize: Whether to normalize the input images to the range [0, 1] (default: False).
:param kernel_regularizer: Kernel regularizer of class tf.keras.regularizers.Regularizer or as a string (default: None).
:param kernel_initializer: Kernel initializer of class tf.keras.initializers.Initializer or as a string (default: "he_uniform").
:param flatten: Whether to use a flatten layer instead of a global average pooling layer after the last block
(default: False - use global average pooling).
:param dropout_rate: Dropout rate used after global average pooling or flattening (default: 0.0).
:return: ResNet-101 model.
"""
return ResNet(
input_shape,
(3, 4, 23, 3),
"large",
output_units=output_units,
include_top=include_top,
after_input=after_input,
normalize=normalize,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
flatten=flatten,
dropout_rate=dropout_rate,
)
def ResNet152(
input_shape: Tuple[int, int, int],
output_units: int = 1000,
include_top: bool = True,
after_input: Optional[Union[Sequential, Layer]] = None,
normalize: bool = False,
kernel_regularizer: Optional[Union[Regularizer, str]] = None,
kernel_initializer: Union[Initializer, str] = "he_uniform",
flatten: bool = False,
dropout_rate: float = 0.0,
) -> Model:
"""
Create a ResNet-152 model.
:param input_shape: Shape of the input images.
:param output_units: Number of output units used in the last layer if include_top is True (default: 1000).
:param include_top: Whether to include the network top after global average pooling or the flatten layer (default: True).
:param after_input: Custom layers to add after the input like preprocessing layers as a Keras model of class
tf.keras.Sequential or as a single layer of class tf.keras.layers.Layer (default: None - no custom layers).
:param normalize: Whether to normalize the input images to the range [0, 1] (default: False).
:param kernel_regularizer: Kernel regularizer of class tf.keras.regularizers.Regularizer or as a string (default: None).
:param kernel_initializer: Kernel initializer of class tf.keras.initializers.Initializer or as a string (default: "he_uniform").
:param flatten: Whether to use a flatten layer instead of a global average pooling layer after the last block
(default: False - use global average pooling).
:param dropout_rate: Dropout rate used after global average pooling or flattening (default: 0.0).
:return: ResNet-152 model.
"""
return ResNet(
input_shape,
(3, 8, 36, 3),
"large",
output_units=output_units,
include_top=include_top,
after_input=after_input,
normalize=normalize,
kernel_regularizer=kernel_regularizer,
kernel_initializer=kernel_initializer,
flatten=flatten,
dropout_rate=dropout_rate,
)
def write_summary(model: Model, file_path: str) -> None:
"""Write a summary of the model to a text file.
:param model: The model to summarize.
:param file_path: The path to the text file to write.
"""
with open(file_path, "w") as f:
model.summary(print_fn=lambda x: f.write(x + "\n"))
if __name__ == "__main__":
# Summarize models to test implementation.
input_shape = (224, 224, 3)
normalize = True
model = ResNet18(input_shape, normalize=normalize)
write_summary(model, "resnet18.txt")
model = ResNet34(input_shape, normalize=normalize)
write_summary(model, "resnet34.txt")
model = ResNet50(input_shape, normalize=normalize)
write_summary(model, "resnet50.txt")
model = ResNet101(input_shape, normalize=normalize)
write_summary(model, "resnet101.txt")
model = ResNet152(input_shape, normalize=normalize)
write_summary(model, "resnet152.txt")