-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
316 lines (279 loc) · 15.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
import argparse
import random
import torch
from tqdm import tqdm
from captum.attr import IntegratedGradients, GuidedGradCam, LayerGradCam, GuidedBackprop, InputXGradient, Saliency, DeepLift, NoiseTunnel
from torchcam.methods import GradCAM, GradCAMpp, SmoothGradCAMpp, XGradCAM, LayerCAM, ScoreCAM, SSCAM, ISCAM
from utils.log import AverageMeter, ProgressMeter, Summary, accuracy, save_checkpoint
from models.model_wrapper import StandardModel, ViTModel, BcosModel
from models.resnet import resnet18, resnet50, resnet101, resnet152, wide_resnet50_2
from models.vgg import vgg16, vgg16_bn, vgg13, vgg19, vgg11
from models.ViT.ViT_new import vit_base_patch16_224
from models.ViT.ViT_LRP import vit_base_patch16_224 as vit_LRP
from models.bagnets.pytorchnet import bagnet33
from models.xdnns.xfixup_resnet import xfixup_resnet50, fixup_resnet50
from models.xdnns.xvgg import xvgg16
from models.bcos_v2.bcos_resnet import resnet50 as bcos_resnet50
from models.bcos_v2.bcos_resnet import resnet18 as bcos_resnet18
from utils.utils import get_imagenet_loaders, str2bool
from explainers.explainer_wrapper import CaptumAttributionExplainer, CaptumNoiseTunnelAttributionExplainer, TorchcamExplainer, ViTGradCamExplainer, ViTRolloutExplainer, ViTCheferLRPExplainer, BcosExplainer, BagNetExplainer, BcosIGUExplainer, BcosGCExplainer, RiseExplainer
from single_deletion import single_deletion_protocol
from incremental_deletion import incremental_deletion_protocol
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data_dir', metavar='DIR', default='imagenet',
help='path to dataset (default: imagenet)')
parser.add_argument('--model', required=True,
choices=['resnet18', 'resnet50', 'resnet101', 'resnet152', 'wide_resnet50_2', 'fixup_resnet50', 'vgg11', 'vgg13', 'vgg16', 'vgg19', 'vgg16_bn', 'bagnet9', 'bagnet33', 'x_resnet50', 'vit_base_patch16_224', 'bcos_resnet50', 'bcos_resnet18', 'x_vgg16'],
help='model architecture')
parser.add_argument('--explainer', required=True,
choices=['Gradient', 'IxG', 'IG', 'IG-U', 'IG-SG', 'IxG-SG', 'IG-SG-SQ', 'IG-SG-VG', 'EG', 'AGI', 'Grad-CAM', 'Grad-CAMpp', 'SG-CAMpp', 'XG-CAM', 'Layer-CAM', 'Score-CAM', 'SS-CAM', 'IS-CAM', 'Rollout', 'CheferLRP', 'Bcos', 'BagNet', 'RISE', 'RISE-U'],
help='explainer')
parser.add_argument('--evaluation_protocol', required=True,
choices=['accuracy', 'single_deletion', 'incremental_deletion', 'accuracy_train_test_w_wo_patches'],
help='evaluation protocol to run')
parser.add_argument('-j', '--workers', default=0, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('-b', '--batch_size', default=64, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--pretrained', default='False', type=str2bool,
help='use pre-trained model')
parser.add_argument('--pretrained_ckpt', type=str, default='none')
parser.add_argument('--seed', default=0, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use. If None, all GPUs are used')
parser.add_argument('--overwrite', required=False, help='Overwrite result if already exists. If False, evaluation is skipped. Default=False', default='False', type=str2bool)
parser.add_argument('--attribution_transform',
choices=['raw', 'abs', 'relu'], default = 'raw',
help='transformation applied to attribution')
parser.add_argument('--nr_images', default=-1, type=int,
help='number of images to use in the protocol. -1 for all images')
parser.add_argument('--use_softmax', default='False', type=str2bool,
help='compute attribution for each permutation new')
# for single_deletion
parser.add_argument('--grid_rows_and_cols', default=4, type=int,
help='number of rows and cols in the intervention grid')
parser.add_argument('--sd_baseline', required=False, default='zeros',
choices=['zeros', 'blur', 'average', 'random'],
help='baseline for perturbation')
# for incremental_deletion (id)
parser.add_argument('--id_baseline', required=False, default='zeros',
choices=['zeros', 'blur', 'average', 'random'],
help='baseline for perturbation')
parser.add_argument('--id_baseline_gaussian_kernel', default=51, type=int,
help='kernel size for Gaussian baseline')
parser.add_argument('--id_baseline_gaussian_sigma', default=41, type=int,
help='sigma for Gaussian baseline')
parser.add_argument('--id_steps', default=32, type=int,
help='number of steps for the protocol')
parser.add_argument('--id_order', required=False,
choices=['ascending', 'descending'],
default='ascending',
help='selection mode for perturbation')
parser.add_argument('--id_update_attribution', default='False', type=str2bool,
help='compute attribution for each permutation new')
def main():
args = parser.parse_args()
random.seed(args.seed)
torch.manual_seed(args.seed)
train_loader, val_loader = get_imagenet_loaders(args, shuffle_val=True, train_with_eval_transform=True)
if args.gpu:
device = 'cuda:' + str(args.gpu)
else:
device = 'cuda'
#device = 'cpu'
# create model
if args.model == 'resnet50':
model = resnet50(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.layer4', use_softmax=args.use_softmax)
elif args.model == 'resnet18':
model = resnet18(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.layer4')
elif args.model == 'resnet101':
model = resnet101(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.layer4')
elif args.model == 'resnet152':
model = resnet152(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.layer4')
elif args.model == 'wide_resnet50_2':
model = wide_resnet50_2(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.layer4')
elif args.model == 'fixup_resnet50':
model = fixup_resnet50()
model = StandardModel(model, gradcam_target_layer = 'model.layer4')
elif args.model == 'vgg11':
model = vgg11(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.features')
elif args.model == 'vgg13':
model = vgg13(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.features')
elif args.model == 'vgg16':
model = vgg16(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.features', use_softmax=args.use_softmax)
elif args.model == 'vgg19':
model = vgg19(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.features')
elif args.model == 'vgg16_bn':
model = vgg16_bn(pretrained=args.pretrained)
model = StandardModel(model, gradcam_target_layer = 'model.features')
elif args.model == 'x_vgg16':
model = xvgg16()
model = StandardModel(model, gradcam_target_layer = 'model.features')
elif args.model == 'bagnet33':
model = bagnet33(pretrained=args.pretrained)
model = StandardModel(model)
elif args.model == 'x_resnet50':
model = xfixup_resnet50()
model = StandardModel(model, gradcam_target_layer = 'model.layer4')
elif args.model == 'bcos_resnet50':
model = bcos_resnet50(pretrained=args.pretrained, long_version=False)
model = BcosModel(model)
elif args.model == 'bcos_resnet18':
model = bcos_resnet18(pretrained=args.pretrained)
model = BcosModel(model)
elif args.model == 'vit_base_patch16_224':
if args.explainer == 'CheferLRP':
model = vit_LRP(pretrained=args.pretrained)
else:
model = vit_base_patch16_224(pretrained=args.pretrained)
model = ViTModel(model)
else:
print('Model not implemented')
if args.pretrained_ckpt != 'none':
state_dict = torch.load(args.pretrained_ckpt, map_location=torch.device('cpu'))
if 'state_dict' in state_dict.keys():
state_dict = state_dict['state_dict']
new_state_dict = state_dict
if 'module.model.' in list(state_dict.keys())[0]:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k.startswith("module.model."):
name = k[13:] # remove `model.`
else:
name = k
new_state_dict[name] = v
elif 'module.' in list(state_dict.keys())[0]:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
elif 'model.' in list(state_dict.keys())[0]:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k.startswith("model."):
name = k[6:] # remove `model.`
else:
name = k
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
model = model.to(device)
model.eval()
# create explainer
if args.explainer == 'IxG':
explainer = InputXGradient(model)
explainer = CaptumAttributionExplainer(explainer, attribution_transform=args.attribution_transform)
elif args.explainer == 'Gradient':
explainer = Saliency(model)
explainer = CaptumAttributionExplainer(explainer, attribution_transform=args.attribution_transform)
elif args.explainer == 'IG':
explainer = IntegratedGradients(model)
baseline = torch.zeros((1,3,224,224)).to(device)
explainer = CaptumAttributionExplainer(explainer, baseline=baseline, attribution_transform=args.attribution_transform)
elif args.explainer == 'IG-U':
baseline = torch.rand((1,3,224,224)).to(device) * 2. - 1. # range is -1 to 1 which is approximately image range
explainer = IntegratedGradients(model)
explainer = CaptumAttributionExplainer(explainer, baseline=baseline, attribution_transform=args.attribution_transform)
elif args.explainer == 'IG-SG':
baseline = torch.zeros((1,3,224,224)).to(device)
explainer = IntegratedGradients(model)
explainer = NoiseTunnel(explainer)
explainer = CaptumNoiseTunnelAttributionExplainer(explainer, baseline=baseline, nt_type='smoothgrad', attribution_transform=args.attribution_transform)
elif args.explainer == 'IxG-SG':
explainer = InputXGradient(model)
explainer = NoiseTunnel(explainer)
explainer = CaptumNoiseTunnelAttributionExplainer(explainer, nt_type='smoothgrad', attribution_transform=args.attribution_transform)
elif args.explainer == 'IG-SG-SQ':
baseline = torch.zeros((1,3,224,224)).to(device)
explainer = IntegratedGradients(model)
explainer = NoiseTunnel(explainer)
explainer = CaptumNoiseTunnelAttributionExplainer(explainer, baseline=baseline, nt_type='smoothgrad_sq', attribution_transform=args.attribution_transform)
elif args.explainer == 'IG-SG-VG':
baseline = torch.zeros((1,3,224,224)).to(device)
explainer = IntegratedGradients(model)
explainer = NoiseTunnel(explainer)
explainer = CaptumNoiseTunnelAttributionExplainer(explainer, baseline=baseline, nt_type='vargrad', attribution_transform=args.attribution_transform)
elif args.explainer == 'Grad-CAM':
if args.model != 'vit_base_patch16_224':
explainer = GradCAM(model, target_layer=model.gradcam_target_layer)
explainer = TorchcamExplainer(explainer, model)
elif args.model == 'vit_base_patch16_224':
explainer = ViTGradCamExplainer(model)
elif args.explainer == 'Grad-CAMpp':
explainer = GradCAMpp(model, target_layer=model.gradcam_target_layer)
explainer = TorchcamExplainer(explainer, model)
elif args.explainer == 'SG-CAMpp':
explainer = SmoothGradCAMpp(model, target_layer=model.gradcam_target_layer)
explainer = TorchcamExplainer(explainer, model)
elif args.explainer == 'XG-CAM':
explainer = XGradCAM(model, target_layer=model.gradcam_target_layer)
explainer = TorchcamExplainer(explainer, model)
elif args.explainer == 'Layer-CAM':
explainer = LayerCAM(model, target_layer=model.gradcam_target_layer)
explainer = TorchcamExplainer(explainer, model)
elif args.explainer == 'Score-CAM':
explainer = ScoreCAM(model, target_layer=model.gradcam_target_layer)
explainer = TorchcamExplainer(explainer, model)
elif args.explainer == 'SS-CAM':
explainer = SSCAM(model, target_layer=model.gradcam_target_layer)
explainer = TorchcamExplainer(explainer, model)
elif args.explainer == 'IS-CAM':
explainer = ISCAM(model, target_layer=model.gradcam_target_layer)
explainer = TorchcamExplainer(explainer, model)
elif args.explainer == 'Rollout':
explainer = ViTRolloutExplainer(model)
elif args.explainer == 'CheferLRP':
explainer = ViTCheferLRPExplainer(model)
elif args.explainer == 'Bcos':
explainer = BcosExplainer(model)
elif args.explainer == 'BagNet':
explainer = BagNetExplainer(model)
elif args.explainer == 'RISE':
assert args.use_softmax == False # make sure the model does not use softmax output because it is used in RISE
baseline = torch.zeros((1,3,224,224)).to(device)
explainer = RiseExplainer(model, args.seed, baseline)
elif args.explainer == 'RISE-U':
assert args.use_softmax == False # make sure the model does not use softmax output because it is used in RISE
baseline = torch.rand((1,3,224,224)).to(device) * 2. - 1. # range is -1 to 1 which is approximately image range
explainer = RiseExplainer(model, args.seed, baseline)
else:
print('Explainer not implemented')
if args.evaluation_protocol == 'single_deletion':
result = single_deletion_protocol(model, explainer, val_loader, args, device)
print('Mean rank correlation: ', result)
elif args.evaluation_protocol == 'incremental_deletion':
result = incremental_deletion_protocol(model, explainer, val_loader, device, args)
print('Incremental deletion AUC: ', result)
elif args.evaluation_protocol == 'accuracy':
top1 = AverageMeter('Acc@1', ':6.2f', Summary.AVERAGE)
top5 = AverageMeter('Acc@5', ':6.2f', Summary.AVERAGE)
for images, target, _ in tqdm(val_loader):
images = images.cuda(device, non_blocking=True)
target = target.cuda(device, non_blocking=True)
# compute output
output = model(images)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
#losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
result = 'Acc@1: ' + str(round(top1.avg.item(),2)) + ' Acc@5 ' + str(round(top5.avg.item(),4))
print(result)
if __name__ == '__main__':
main()