-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_kdetrees.R
executable file
·377 lines (311 loc) · 15.8 KB
/
run_kdetrees.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#!/usr/bin/env -S Rscript --slave
# run_kdetrees.R
VERSION <- 'Version: 0.4.0_2024-04-01' # check for outlier trees and quit if non are found
#v0.3 20Oct22 with portable shebang line
# runs kdetrees(all.trees.raw, distance = "dissimilarity", topo.only = TRUE & topo.only = FALSE)
AUTHOR <- "Authors: Pablo Vinuesa [CCG-UNAM], Bruno Contreras Moreira [EEAD-CSIC]; "
REPOS <- "https://cloud.r-project.org"
# find script path
cmd.args <- commandArgs()
m <- regexpr("(?<=^--file=).+", cmd.args, perl=TRUE)
script.dir <- dirname(regmatches(cmd.args, m))
LOCAL_LIB = paste(script.dir,"/lib/R",sep = "")
.libPaths( c( .libPaths(), LOCAL_LIB) )
# Note: development made on Tenerife@/home/vinuesa/Projects/marfil/PHYLOMARK/Enterobacter_MLSA_primers_Jan16/F2P_primers/dna_amps
#--------------------------------
#>>>>> FUNCTION DEFINITIONS <<<<<
#--------------------------------
print_help <- function(){
cat("", VERSION, AUTHOR, "",
">>> USAGE: ~/R_code/scripts/run_kdetrees.R <src trees extension name> <file_with_multiple_input_newick_trees> <real; outlier detection tuning parameter [def: k=1.5; less is more stringent]",
"",
">>> AIM: runs the non-parametric kdetrees test to find discordant phylogenetic trees using dist=dissimilarity and topo.only = TRUE & topo.only = FALSE",
" assumes trees are generated by the multispecies coalescent distribution and detects outlier trees that are unlikely produced by this distribution",
"",
">>> OUTPUT: Returns diagnostic plots of the kernel density estimates (kde), along with a csv file with kde values and test results (ok|outlier),
for both topo.only = TRUE and topo.only = FALSE. Also writes summary stat text files",
"",
">>> NOTES:",
"# 1. ARGUMENTS:",
" src tree extension names should be different from that of the file holding them all; e.g. <ph> vs <all_trees.tre>",
"",
">>> ASSUMPTIONS ON DATA:",
" runs kdeobj.diss.topo <- kdetrees(all.trees.raw, distance = \"dissimilarity\", topo.only = TRUE & topo.only = FALSE )",
" which does not complain if trees are not rooted or have different number of terminals",
"",
">>> REFERENCE: Weyenberg et al. 2014. Bioinformatics: 30(16):2280-2287; PMID:24764459",
"",
">>> TODO:",
"1. Integrate with compute_suppValStasts_and_RF-dist.R to provide a single dataframe for amplicon quality evaluation!",
"2. To achieve 1, put this script into a function and run from within the previous script",
"3. Need to explore the possibilities offered by package distory",
"4. Add runmodes; runmode==1 could be an evaluation of k=0.75, 1, 1.25 and 1.5",
" An additional runmode could be used to get the good alns for phylogenomics (aln->concat->FastTree)",
" Alternatively or in addition to 1., this script sould be called from run_core_genome_FT_WAGGphylo.sh",
" by parsing the file kde_dfr_file_all_trees.tre.csv",
"5. refactor code into subrutines for easier calling from other scripts",
"6. Add getoptLong; see https://cran.r-project.org/web/packages/GetoptLong/index.html",
" or simply optparse: https://cran.r-project.org/web/packages/optparse/index.html",
"",
sep ="\n")
}
#-----------------------------------------------------------------------
# see http://www.inside-r.org/r-doc/base/file.copy
# for details on file manipulation from R
checkFileCreated <- function(F){
if( file.exists(F) ){
message("File ", F, " was created ...")
}else{
warning("File ", F, " could not be written to disk!")
}
}
#-----------------------------------------------------------------------
run_kdetrees_diss_topo <- function(tf, k = 1.5)
{
# compute kernel density estimate of input tree topology distribution
# using (distance = "dissimilarity", topo.only = TRUE)
# trees do not require to be rooted
#
# ARGS:
# tf = multinewick file name holding multiple newick strings/trees
# k = the outlier sensintitivity constant: less is more sensitive (detects more outliers); historical default = 1.5
# Returns:
# a kdeobj.diss.topo object
fun_name <- "run_kdetrees_diss_topo"
if (missing(tf))
{
stop(" Function ", fun_name, " requires a file name holding multiple newick strings/trees")
}
kdeobj.diss.topo <- kdetrees(tf, distance = "dissimilarity", k=k, topo.only = TRUE )
return(kdeobj.diss.topo)
}
#-----------------------------------------------------------------------
run_kdetrees_diss_bl <- function(tf, k = 1.5)
{
# compute kernel density estimate of input tree distribution with branch lengths
# using (distance = "dissimilarity", topo.only = FALSE)
# trees do not require to be rooted
#
# ARGS:
# tf = multinewick file name holding multiple newick strings/trees
# k = the outlier sintitivity constant: less is more sensitive (detects more outliers); historical default = 1.5
# Returns:
# a kdeobj.diss.topo object
fun_name <- "run_kdetrees_diss_bl"
if (missing(tf))
{
stop(" Function ", fun_name, " requires a file name holding multiple newick strings/trees")
}
kdeobj.diss.bl <- kdetrees(tf, distance = "dissimilarity", k=k, topo.only = FALSE )
return(kdeobj.diss.bl)
}
#-----------------------------------------------------------------------
run_kdetrees_k_check <- function(tf, k_vec = c(0.75, 1, 1.25, 1.5))
{
# get the kdeobj using distance = "dissimilarity", topo.only = TRUE; trees do not require to be rooted
#kdeobj <- kdetrees(all.trees.raw, distance = "dissimilarity", topo.only = TRUE )
fun_name <- "run_kdetrees_k_check"
if (missing(tf))
{
stop(" Function ", fun_name, " requires a file name holding multiple newick strings/trees")
}
for (i in k_vec)
{
kde_obj <- paste("kdeobj.diss.topo.", i, sep="")
kde_obj <- run_kdetrees_diss_topo(trees_file, i)
return(kdeobj.diss.topo)
}
}
#-----------------------------------------------------------------------
#####################
##### MAIN CODE #####
#####################
#-------------------------
#>>>>> GET USER ARGS <<<<<
#-------------------------
argv <- commandArgs(TRUE)
if(length(argv) < 2)
{
print_help()
stop(" Usage: <src trees extension names> <file_with_multiple_input_newick_trees> <real; outlier detection tuning parameter [def: k=1.5; less is more stringent]")
}
tree_ext <- as.character(argv[1])
input_trees_file <- as.character(argv[2])
if(length(argv) == 2)
{
k.in <- 1.5
}else{ k.in <- as.numeric(argv[3]) }
message("#>>> Running with arguments: ", tree_ext, " ", input_trees_file, " k=", k.in, " ...")
#--------------------------
#>>>>> LOAD LIBRARIES <<<<<
#--------------------------
# see ?kdetrees for more info on the function
# see help(package=kdetrees)
library("stringr")
library("ape")
library("kdetrees")
library("vioplot")
# initialize vars
no.tips.vec <- c()
no.tips.dfr <- c()
col.vec.topo <- c()
flag.vec.topo <-c()
flag.vec.bl <-c()
combined.flag.vec.bl.topo <- c()
kde_bl_topo_test <-c()
# 1. get the list of tree files
# >>> pass the tree_ext arg to list.files() funct as a regex
rgx <- paste("\\.", tree_ext, "$", sep= "")
files <- list.files(pattern=rgx)
# check there are tree files with tree_ext extension in the working directory
if(length(files) == 0) stop("There are no tree files with ", tree_ext, " extension in the working directory! Will stop now ...")
# save old par() to reset after manipulating it for the plots
opar <- par(no.readonly = TRUE)
# Need to find out how to create a multiphylo object by directly reading in multiple trees
# like from files; may need tree.names = files
#for (i in files){
# all.trees.raw <- read.tree(file=files[i], tree.names = files, keep.multi = TRUE )
#}
# read all trees from a concatenated file holding them all
# system("cat *.ph > all_trees.raw.tre")
all.trees.raw <- read.tree(file=input_trees_file)
# get the kdeobj using distance = "dissimilarity", topo.only = TRUE; trees do not require to be rooted
#kdeobj <- kdetrees(all.trees.raw, distance = "dissimilarity", topo.only = TRUE )
kdeobj.diss.bl <-run_kdetrees_diss_bl(all.trees.raw, k.in)
kdeobj.diss.topo <-run_kdetrees_diss_topo(all.trees.raw, k.in)
#kdeobj.diss.topo <- kdetrees(all.trees.raw, distance = "dissimilarity", k=k.in, topo.only = TRUE )
#kdeobj.diss.bl <- kdetrees(all.trees.raw, distance = "dissimilarity", k=k.in, topo.only = FALSE )
# print overview stats
kde_stats_file <- paste("kde_stats_", input_trees_file, ".out", sep = "")
sink(file = kde_stats_file, type=c("output"))
kdeobj.diss.bl
kdeobj.diss.topo
sink()
checkFileCreated(kde_stats_file)
# These lines, using dist=geodesic do not work; require rooting
#kdeobj.geod.bl <- kdetrees(all.trees.raw, distance = "geodesic", outgroup= "Cronobacter_sakazakii_ATCC_BAA-894", topo.only = FALSE )
#kdeobj.geod.topo <- kdetrees(all.trees.raw, distance = "geodesic", outgroup="Cronobacter_sakazakii_ATCC_BAA-894", topo.only = TRUE )
# print overview stats
#kdeobj.geod.bl
#kdeobj.geod.topo
# make parallel boxplots
svg(file="parallel_bxplots_kdeDensity_dist_dissim_topo_TRUE-FALSE.svg")
layout(matrix( c(1,2), 1, 2, byrow = TRUE) )
boxplot(kdeobj.diss.topo$density, main="dist=dissim., topo.only=T")
boxplot(kdeobj.diss.bl$density, main="dist=dissim., topo.only=F")
dev.off()
par(opar)
checkFileCreated("parallel_bxplots_kdeDensity_dist_dissim_topo_TRUE-FALSE.svg")
# print the bad files to screen
topo.outlier.tree.idx <- kdeobj.diss.topo$i
message("there are ", length(topo.outlier.tree.idx), " outlier trees")
num_topo_outlier_trees <- length(topo.outlier.tree.idx)
bl.outlier.tree.idx <- kdeobj.diss.bl$i
message("there are ", length(bl.outlier.tree.idx), " outlier trees")
num_bl_outlier_trees <- length(bl.outlier.tree.idx)
total_outlier_trees <- num_topo_outlier_trees + num_bl_outlier_trees
# create a color vector, to plot the good tree points in blue and outliers in black
src.tree.idx = 1:length(all.trees.raw)
col.vec.topo <- src.tree.idx %in% topo.outlier.tree.idx
col.vec.topo <- ifelse(col.vec.topo, col.vec.topo <- c("black"), col.vec.topo <- c("blue"))
col.vec.bl <- src.tree.idx %in% bl.outlier.tree.idx
col.vec.bl <- ifelse(col.vec.bl, col.vec.bl <- c("black"), col.vec.bl <- c("blue"))
# create plot of kde density points and a boxplot summarithing their distribution
# Note the use of fig= for fine control of placement
svg(file="dotplot_and_bxplot_kdeDensity_dist_dissim_topo_TRUE.svg")
#layout(matrix( c(1,2), 1, 2, byrow = TRUE) )
main_txt <- paste("dist=dissim., topo.only=T, k=", k.in, sep = "")
par(fig=c(0, 0.9, 0, 0.5))
plot(kdeobj.diss.topo$density, col = col.vec.topo, main = main_txt )
# notice the use of new=T; otherwise the boxplot would wipe out the 1st plot!
par(fig=c(0.75, 1, 0, 0.5), new=T)
boxplot(kdeobj.diss.topo$density, col = col.vec.topo, axes=FALSE, main="k=1.5")
main_txt <- paste("dist=dissim., topo.only=F, k=", k.in, sep = "")
par(fig=c(0, 0.9, 0.5, 1), new = T)
plot(kdeobj.diss.bl$density, col = col.vec.bl, main = main_txt )
par(fig=c(0.75, 1, 0.5, 1), new=T)
boxplot(kdeobj.diss.bl$density, col = col.vec.bl, axes=FALSE, main="k=1.5")
dev.off()
par(opar)
checkFileCreated("dotplot_and_bxplot_kdeDensity_dist_dissim_topo_TRUE.svg")
# print the outlier files to
kde_outlier_files <- paste("kde_outlier_files_", input_trees_file, ".out", sep = "")
sink( file = kde_outlier_files, type=c("output") )
message("# These are the outlier trees using dist=dissimilarity and topo.only=T, with k = ", k.in)
files[topo.outlier.tree.idx]
message("===============================================================================================")
message("# These are the outlier trees using dist=dissimilarity and topo.only=F, with k = ", k.in)
files[bl.outlier.tree.idx]
sink()
checkFileCreated(kde_outlier_files)
if (total_outlier_trees == 0){
q(save = "no", status = 0)
#kde_dfr_file_*.tab file not written -> checked in main script
}else {
# construct a dataframe
flag.vec.topo <- src.tree.idx %in% topo.outlier.tree.idx
flag.vec.topo <- ifelse(flag.vec.topo, flag.vec.topo <- c("outlier"), flag.vec.topo <- c("ok"))
flag.vec.bl <- src.tree.idx %in% bl.outlier.tree.idx
flag.vec.bl <- ifelse(flag.vec.bl, flag.vec.bl <- c("outlier"), flag.vec.bl <- c("ok"))
#flag.vec.topo.comb <- src.tree.idx %in% topo.outlier.tree.idx
#flag.vec.bl.comb <- src.tree.idx %in% bl.outlier.tree.idx
#combined.flag.vec.bl.topo <- unique(union(flag.vec.topo.comb, flag.vec.bl.comb))
#combined.flag.vec.bl.topo <- ifelse(combined.flag.vec.bl.topo, combined.flag.vec.bl.topo <- c("outlier"), combined.flag.vec.bl.topo <- c("ok"))
kde.densities.vec.topo <- kdeobj.diss.topo$density
kde.densities.vec.bl <- kdeobj.diss.bl$density
#kde.trees.dfr <- data.frame(file=files, kde_topo_dens=kde.densities.vec.topo, kde_topo_test=flag.vec.topo, kde_bl_dens=kde.densities.vec.bl, kde_bl_test=flag.vec.bl, kde_bl_topo_test=combined.flag.vec.bl.topo)
kde.trees.dfr <- data.frame(file=files, kde_topo_dens=kde.densities.vec.topo, kde_topo_test=flag.vec.topo, kde_bl_dens=kde.densities.vec.bl, kde_bl_test=flag.vec.bl)
# Genarate a new variable kde_bl_topo_test, that combines the outilers found by both kde_topo_test & kde_bl_test
kde.trees.dfr <- within(kde.trees.dfr, {
kde_bl_topo_test[kde_topo_test == "ok" & kde_bl_test == "ok"] <- "ok"
kde_bl_topo_test[kde_topo_test == "outlier"] <- "outlier"
kde_bl_topo_test[kde_bl_test == "outlier"] <- "outlier"
})
# write kde.trees.dfr to file:
kde_dfr_file <- paste("kde_dfr_file_", input_trees_file, ".tab", sep = "")
write.table(kde.trees.dfr, file=kde_dfr_file, row.names = FALSE, sep = "\t", quote = FALSE)
checkFileCreated(kde_dfr_file)
# make histograms to summarize distributions of tree KDEs
# 1. get colors
# http://stackoverflow.com/questions/21858394/partially-color-histogram-in-r
# Here's the method I mentioned in comments:
# Make some test data (you should do this in your question!)
# test = runif(10000,-2,0)
# get R to compute the histogram but not plot it:
# h = hist(test, breaks=100,plot=FALSE)
# Your histogram is divided into three parts:
# ccat = cut(h$breaks, c(-Inf, -0.6, -0.4, Inf))
# plot with this palette, implicit conversion of factor to number indexes the palette:
# plot(h, col=c("white","green","red")[ccat])
topo.cutoff <- max(kde.trees.dfr$kde_topo_dens[kde.trees.dfr$kde_topo_test == "outlier"])
h.topo <- hist(kde.trees.dfr$kde_topo_dens, breaks = 50, plot=FALSE) # probability = TRUE, <== does not like it!?
ccat.topo <- cut(h.topo$breaks, c(-Inf, topo.cutoff, Inf) )
bl.cutoff <- max(kde.trees.dfr$kde_bl_dens[kde.trees.dfr$kde_bl_test == "outlier"])
h.bl <- hist(kde.trees.dfr$kde_bl_dens, breaks = 50, plot=FALSE) # probability = TRUE, <== does not like it!?
ccat.bl <- cut(h.bl$breaks, c(-Inf, bl.cutoff, Inf) )
hist_plot_file <- paste("kde_hist_plot_file_", input_trees_file, ".svg", sep = "")
svg(file=hist_plot_file)
layout(matrix( c(1,2), 2, 1, byrow = TRUE) )
plot(h.topo, main="kde topo", col=c("black", "blue")[ccat.topo])
rug(jitter(kde.trees.dfr$kde_topo_dens))
#lines(density(kde.trees.dfr$kde_topo_dens), lwd=2)
plot(h.bl, main="kde bl", col=c("black", "blue")[ccat.bl])
rug(jitter(kde.trees.dfr$kde_bl_dens))
#lines(density(kde.trees.dfr$kde_bl_dens), lwd=2)
dev.off()
checkFileCreated(hist_plot_file)
# make violin plots to summarize distributions of tree KDEs
violin_plot_file <- paste("violin_plot_file_", input_trees_file, ".svg", sep = "")
svg(file=violin_plot_file)
layout(matrix( c(1,2), 2, 1, byrow = TRUE) )
vioplot( kde.trees.dfr$kde_bl_dens, col="gold", names = c("kde for tree distributions with branch lengths") )
vioplot( kde.trees.dfr$kde_topo_dens, col="gold", names = c("kde for topology distributions") )
dev.off()
checkFileCreated(violin_plot_file)
# Try doing a consensus;
# Error in FUN(X[[i]], ...) : one tree has a different number of tips
# consensus(good.trees, p = 0.5)
# exit without saving workspace
# https://stackoverflow.com/questions/52871579/stop-r-script-with-exit-status-0
q(save = "no", status = 0)
}