-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsudoku_puzzle.py
361 lines (325 loc) · 12.7 KB
/
sudoku_puzzle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from puzzle import Puzzle
class SudokuPuzzle(Puzzle):
"""
A sudoku puzzle that may be solved, unsolved, or even unsolvable.
"""
def __init__(self, n, symbols, symbol_set):
"""
Create a new nxn SudokuPuzzle self with symbols
from symbol_set already selected.
@type self: SudokuPuzzle
@type n: int
@type symbols: list[str]
@type symbol_set: set[str]
"""
assert n > 0
assert round(n ** (1 / 2)) * round(n ** (1 / 2)) == n
assert all([d in (symbol_set | {"*"}) for d in symbols])
assert len(symbol_set) == n
assert len(symbols) == n ** 2
self._n, self._symbols, self._symbol_set = n, symbols, symbol_set
def __eq__(self, other):
"""
Return whether SudokuPuzzle self is equivalent to other.
@type self: SudokuPuzzle
@type other: SudokuPuzzle | Any
@rtype: bool
>>> grid1 = ["A", "B", "C", "D"]
>>> grid1 += ["D", "C", "B", "A"]
>>> grid1 += ["*", "D", "*", "*"]
>>> grid1 += ["*", "*", "*", "*"]
>>> s1 = SudokuPuzzle(4, grid1, {"A", "B", "C", "D"})
>>> grid2 = ["A", "B", "C", "D"]
>>> grid2 += ["D", "C", "B", "A"]
>>> grid2 += ["*", "D", "*", "*"]
>>> grid2 += ["*", "*", "*", "*"]
>>> s2 = SudokuPuzzle(4, grid2, {"A", "B", "C", "D"})
>>> s1.__eq__(s2)
True
>>> grid3 = ["A", "B", "C", "D"]
>>> grid3 += ["D", "C", "B", "A"]
>>> grid3 += ["*", "D", "*", "*"]
>>> grid3 += ["*", "A", "*", "*"]
>>> s3 = SudokuPuzzle(4, grid3, {"A", "B", "C", "D"})
>>> s1.__eq__(s3)
False
"""
return (type(other) == type(self) and
self._n == other._n and self._symbols == other._symbols and
self._symbol_set == other._symbol_set)
def __str__(self):
"""
Return a human-readable string representation of SudokuPuzzle self.
>>> grid = ["A", "B", "C", "D"]
>>> grid += ["D", "C", "B", "A"]
>>> grid += ["*", "D", "*", "*"]
>>> grid += ["*", "*", "*", "*"]
>>> s = SudokuPuzzle(4, grid, {"A", "B", "C", "D"})
>>> print(s)
AB|CD
DC|BA
-----
*D|**
**|**
"""
def row_pickets(row):
"""
Return string of characters in row with | divider
between groups of sqrt(n)
@type row: list[str]
@rtype: str
"""
string_list = []
r = round(self._n ** (1 / 2))
for i in range(self._n):
if i > 0 and i % r == 0:
string_list.append("|")
string_list.append(row[i])
return "".join(string_list)
def table_dividers(table):
"""
Return rows of strings in table with
"-----" dividers between groups of sqrt(n) rows.
@type table: list[str]
@rtype: list[str]
"""
r = round(self._n ** (1 / 2))
t, divider = [], "-" * (self._n + r - 1)
for i in range(self._n):
if i > 0 and i % r == 0:
t.append(divider)
t.append(table[i])
return t
rows = [row_pickets([self._symbols[r * self._n + c]
for c in range(self._n)])
for r in range(self._n)]
rows = table_dividers(rows)
return "\n".join(rows)
def is_solved(self):
"""
Return whether SudokuPuzzle self is solved.
@type self: SudokuPuzzle
@rtype: bool
>>> grid = ["A", "B", "C", "D"]
>>> grid += ["C", "D", "A", "B"]
>>> grid += ["B", "A", "D", "C"]
>>> grid += ["D", "C", "B", "A"]
>>> s = SudokuPuzzle(4, grid, {"A", "B", "C", "D"})
>>> s.is_solved()
True
>>> grid[9] = "D"
>>> grid[10] = "A"
>>> s = SudokuPuzzle(4, grid, {"A", "B", "C", "D"})
>>> s.is_solved()
False
"""
# convenient names
n, symbols = self._n, self._symbols
# no "*" left and all rows, column, subsquares have correct symbols
return ("*" not in symbols and
all([(self._row_set(i) == self._symbol_set and
self._column_set(i) == self._symbol_set and
self._subsquare_set(i) ==
self._symbol_set) for i in range(n ** 2)]))
def extensions(self):
"""
Return list of extensions of SudokuPuzzle self.
@type self: SudokuPuzzle
@rtype: list[SudokuPuzzle]
>>> grid = ["A", "B", "C", "D"]
>>> grid += ["C", "D", "A", "B"]
>>> grid += ["B", "A", "D", "C"]
>>> grid += ["D", "C", "B", "*"]
>>> s = SudokuPuzzle(4, grid, {"A", "B", "C", "D"})
>>> L1 = list(s.extensions())
>>> grid[-1] = "A"
>>> L2 = [SudokuPuzzle(4, grid, {"A", "B", "C", "D"})]
>>> len(L1) == len(L2)
True
>>> all([s in L2 for s in L1])
True
>>> all([s in L1 for s in L2])
True
"""
# convenient names
symbols, symbol_set, n = self._symbols, self._symbol_set, self._n
if "*" not in symbols:
# return an empty list
return [_ for _ in []]
else:
# position of first empty position
i = symbols.index("*")
# allowed symbols at position i
# A | B == A.union(B)
allowed_symbols = (self._symbol_set -
(self._row_set(i) |
self._column_set(i) |
self._subsquare_set(i)))
# list of SudokuPuzzles with each legal digit at position i
return (
[SudokuPuzzle(n,
symbols[:i] + [d] + symbols[i + 1:], symbol_set)
for d in allowed_symbols])
# override fail_fast.
# Notice that it is not possible to complete a sudoku puzzle if there
# is one open position that has no symbols available to put in it. In
# other words, if there is one open position where the symbols already used
# in the same row, column, and subsquare exhaust the symbols available,
# there is no point in continuing.
def fail_fast(self):
"""
Returns True or False, depending on whether it is clear that the
current puzzle configuration can never be completed, through a sequence
of extensions, to a solved state.
@type self: SudokuPuzzle
@rtype: bool
>>> grid = ["1", "2", "*", "*"]
>>> grid += ["3", "*", "*", "*"]
>>> grid += ["*", "4", "*", "*"]
>>> grid += ["*", "*", "*", "*"]
>>> set_ = {"1", "2", "3", "4"}
>>> s = SudokuPuzzle(4, grid, set_)
>>> s.fail_fast()
True
>>> grid2 = ["1", "2", "*", "*"]
>>> grid2 += ["3", "*", "*", "*"]
>>> grid2 += ["*", "*", "*", "*"]
>>> grid2 += ["4", "*", "*", "*"]
>>> set2 = {"1", "2", "3", "4"}
>>> s2 = SudokuPuzzle(4, grid2, set2)
>>> s2.fail_fast()
False
"""
if self.is_solved():
return False
for i in range(0, self._n ** 2):
if self._symbols[i] == "*":
symbol_all = self._symbol_set.copy() | {"*"}
union_set = (self._row_set(i) | self._column_set(
i) | self._subsquare_set(i))
if len(symbol_all) - len(union_set) == 0:
return True
return False
# some helper methods
def _row_set(self, m):
#
# Return set of symbols in row of SudokuPuzzle self's symbols
# where position m occurs.
#
# @type self: SudokuPuzzle
# @type m: int
assert 0 <= m < self._n ** 2
# convenient names
n, symbols = self._n, self._symbols
# first position in m's row
r = (m // n) * n
# set of elements from symbols[r] .. symbols[r+n-1]
return set([symbols[r + i] for i in range(n)])
def _column_set(self, m):
# Return set of symbols in column of SudokuPuzzle self's symbols
# where position m occurs.
#
# @type self: SudokuPuzzle
# @type m: int
assert 0 <= m <= self._n ** 2
# convenient names
symbols, n = self._symbols, self._n
# first position in m's column
c = m % n
# set of elements from symbols[c], symbols[c + n],
# ... symbols[c + (n * (n-1))]
return set([symbols[c + (i * n)] for i in range(n)])
def _subsquare_set(self, m):
# Return set of symbols in subsquare of SudokuPuzzle self's symbols
# where position m occurs.
#
# @type self: SudokuPuzzle
# @type m: int
assert 0 <= m < self._n ** 2
# convenient names
n, symbols = self._n, self._symbols
# row, column where m occur
row, col = m // n, m % n
# length of subsquares
ss = round(n ** (1 / 2))
# upper-left position of m's subsquare
ul = (((row // ss) * ss) * n) + ((col // ss) * ss)
# return set of symbols from subsquare starting at ul
return set(
[symbols[ul + i + n * j] for i in range(ss) for j in range(ss)])
if __name__ == "__main__":
import doctest
doctest.testmod()
s = SudokuPuzzle(9,
["*", "*", "*", "7", "*", "8", "*", "1", "*",
"*", "*", "7", "*", "9", "*", "*", "*", "6",
"9", "*", "3", "1", "*", "*", "*", "*", "*",
"3", "5", "*", "8", "*", "*", "6", "*", "1",
"*", "*", "*", "*", "*", "*", "*", "*", "*",
"1", "*", "6", "*", "*", "9", "*", "4", "8",
"*", "*", "*", "*", "*", "1", "2", "*", "7",
"8", "*", "*", "*", "7", "*", "4", "*", "*",
"*", "6", "*", "3", "*", "2", "*", "*", "*"],
{"1", "2", "3", "4", "5", "6", "7", "8", "9"})
from time import time
print("solving sudoku from July 9 2015 Star... \n\n{}\n\n".format(s))
from puzzle_tools import depth_first_solve
start = time()
# sol = breadth_first_solve(s) # new bfs
sol = depth_first_solve(s)
print(sol)
while sol.children:
sol = sol.children[0]
end = time()
print("time to solve 9x9 using depth_first: "
"{} seconds\n".format(end - start))
print(sol)
#
# s = SudokuPuzzle(9,
# ["*", "*", "*", "9", "*", "2", "*", "*", "*",
# "*", "9", "1", "*", "*", "*", "6", "3", "*",
# "*", "3", "*", "*", "7", "*", "*", "8", "*",
# "3", "*", "*", "*", "*", "*", "*", "*", "8",
# "*", "*", "9", "*", "*", "*", "2", "*", "*",
# "5", "*", "*", "*", "*", "*", "*", "*", "7",
# "*", "7", "*", "*", "8", "*", "*", "4", "*",
# "*", "4", "5", "*", "*", "*", "8", "1", "*",
# "*", "*", "*", "3", "*", "6", "*", "*", "*"],
# {"1", "2", "3", "4", "5", "6", "7", "8", "9"})
#
# print("solving 3-star sudoku from \"That's Puzzling\","
# "November 14th 2015\n\n{}\n\n".format(s))
# start = time()
# # sol = breadth_first_solve(s)
# sol = depth_first_solve(s)
# while sol.children:
# sol = sol.children[0]
# end = time()
# print("time to solve 9x9 using depth_first: {} seconds\n".format(
# end - start))
# print(sol)
#
# s = SudokuPuzzle(9,
# ["5", "6", "*", "*", "*", "7", "*", "*", "9",
# "*", "7", "*", "*", "4", "8", "*", "3", "1",
# "*", "*", "*", "*", "*", "*", "*", "*", "*",
# "4", "3", "*", "*", "*", "*", "*", "*", "*",
# "*", "8", "*", "*", "*", "*", "*", "9", "*",
# "*", "*", "*", "*", "*", "*", "*", "2", "6",
# "*", "*", "*", "*", "*", "*", "*", "*", "*",
# "1", "9", "*", "3", "6", "*", "*", "7", "*",
# "7", "*", "*", "1", "*", "*", "*", "4", "2"],
# {"1", "2", "3", "4", "5", "6", "7", "8", "9"})
#
# print(
# "solving 4-star sudoku from \"That's Puzzling\", "
# "November 14th 2015\n\n{}\n\n".format(
# s))
# start = time()
# sol = depth_first_solve(s)
# while sol.children:
# sol = sol.children[0]
# end = time()
# print("time to solve 9x9 using depth_first: {} seconds\n".format(
# end - start))
# print(sol)