-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
206 additions
and
0 deletions.
There are no files selected for viewing
File renamed without changes.
File renamed without changes.
File renamed without changes.
206 changes: 206 additions & 0 deletions
206
04_Age_Expansion_Analysis/03d_age_def_compare_matched.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
wd <- "~/projects/chimp_human_opnmf/" | ||
setwd(wd) | ||
# load in libraries needed for script # | ||
# need to install pacman if not already installed | ||
if (!require("pacman")) install.packages("pacman") | ||
pacman::p_load(fs, ggplot2, dplyr, tidyr, reshape2, readr, | ||
broom, tibble, sfsmisc, cocor, oro.nifti, neurobase, ggrepel) #MASS | ||
|
||
#### INPUTS #### | ||
# path to data - which is the outputs folder from opnmf_age_def.R script # | ||
dat_path <- paste(path_wd(), "outputs", sep = "/") | ||
|
||
## INPUT 1: chimp - baboon (haiko) age def OPNMF csv ## | ||
chimp_B_dat <- read_csv(file = paste(dat_path, | ||
"Chimp_meta_QC_u50_n189_Rank_17Chimp_cort_n189_TPM03_rank_17_num_match_Haiko2Juna_expansion_0.08_0.8_fact4_2mm.csv", | ||
sep = "/")) %>% | ||
mutate(statistic = abs(statistic), | ||
variable = as.factor(1:17)) %>% # make T-stat positive for easier plotting and explaining | ||
add_column(Species = as.factor("Chimpanzee(Baboon)")) %>% | ||
rename(factor = variable) | ||
|
||
## INPUT 2: chimp - Macaque (MeanMacaque) age def OPNMF csv ## | ||
chimp_M_dat <- read_csv(file = paste(dat_path, | ||
"Chimp_meta_QC_u50_n189_Rank_17Chimp_cort_n189_TPM03_rank_17_num_match_MeanMacaque2Juna_expansion_0.05_0.8_2mm.csv", | ||
sep = "/")) %>% | ||
mutate(statistic = abs(statistic), | ||
variable = as.factor(1:17)) %>% # make T-stat positive for easier plotting and explaining | ||
add_column(Species = as.factor("Chimpanzee(Macaque)")) %>% | ||
rename(factor = variable) | ||
|
||
|
||
## INPUT 3: Human (IXI) - Chimp age def OPNMF csv ## | ||
human_dat <- read_csv(file = paste(dat_path, | ||
"IXI_n189_matched_meta_Rank_17IXI_cort_n480_rank_17_juna2MNI_expansion_0.2_2_3mm.csv", | ||
sep = "/")) %>% | ||
mutate(statistic = abs(statistic), | ||
variable = as.factor(1:17)) %>% # make T-stat positive for easier plotting and explaining | ||
add_column(Species = as.factor("Human")) %>% | ||
rename(factor = variable) | ||
|
||
# df with both chimp data | ||
chimp_MB_dat <- dplyr::full_join(chimp_B_dat, chimp_M_dat) | ||
|
||
#### Compare aging and expansion using permutation testing ##### | ||
nperm <- 10e4 | ||
### Should turn perm test into a simple function ### | ||
|
||
## Species spereate ## | ||
## HUMAN ## | ||
|
||
# empty list for human perm correlation results # | ||
perm_res_H <- vector("list", nperm) | ||
set.seed(47) | ||
for (perm_H in 1:nperm) { | ||
|
||
perm_res_H[[perm_H]] <- cor(x=human_dat$statistic, y=sample(human_dat$def_dat), | ||
method = "pearson") | ||
} | ||
|
||
H_cor <- cor(human_dat$statistic, human_dat$def_dat) | ||
|
||
perm_res_df_H <- data.frame(perm_R = unlist(perm_res_H)) | ||
|
||
h_p_val <- sum(unlist(perm_res_H) >= H_cor ) / nperm | ||
|
||
ggplot(perm_res_df_H, aes(perm_R)) + | ||
geom_density(color="#CC79A7",fill="#CC79A7") + | ||
geom_vline(xintercept = H_cor, linewidth=2, lty=2, color = "grey") + | ||
scale_x_continuous(limits = c(-1,1), breaks = seq(-1,1,0.5)) + | ||
labs(x = "Pearson's R", | ||
y = "Count") + | ||
theme_classic(base_size = 20) + | ||
annotate("text", x=-0.75, y=c(1.3, 1.2), color = "#CC79A7", | ||
label = c(paste("italic(r) == ", round(H_cor, 2), sep=""), | ||
paste("italic(p) == ", sprintf(round(h_p_val,3), fmt = "%#.4f"), | ||
sep = "")), | ||
size=8, parse=TRUE) | ||
|
||
ggsave(filename = paste(dat_path, | ||
"IXI_N480_J2M_Rank17_statistic_R_perm_10e4_IXI_n189.png", | ||
sep = "/")) | ||
|
||
## CHIMPNAZEE ## | ||
|
||
# Baboon(Haiko) template -> Juna expansion # | ||
|
||
perm_res_C_B <- vector("list", nperm) | ||
set.seed(47) | ||
for (perm_C in 1:nperm) { | ||
|
||
perm_res_C_B[[perm_C]] <- cor(x=chimp_B_dat$statistic, y=sample(chimp_B_dat$def_dat), | ||
method = "pearson") | ||
} | ||
# correlation between aging and baboon - chimp expansion of across OPNMF factors # | ||
C_B_cor <- cor(chimp_B_dat$statistic, chimp_B_dat$def_dat) | ||
# mnake a df fr easier ploting # | ||
perm_res_df_C_B <- data.frame(perm_R = unlist(perm_res_C_B)) | ||
# gather p-value | ||
C_B_pval <- sum(unlist(perm_res_C_B) <= C_B_cor ) / nperm | ||
|
||
ggplot(perm_res_df_C_B, aes(perm_R)) + | ||
geom_density(color= "#E1BE6A", fill= "#E1BE6A") + | ||
geom_vline(xintercept = C_B_cor, lwd=2, lty=2, color = "grey") + | ||
scale_x_continuous(limits = c(-1,1), breaks = seq(-1,1,0.5)) + | ||
labs(x = "Pearson's R", | ||
y = "Count") + | ||
theme_classic(base_size = 20) + | ||
annotate("text", x=0.75, y=c(1.3, 1.2), color = "#E1BE6A", | ||
label = c(paste("italic(r) == ", round(C_B_cor, 3), sep=""), | ||
paste("italic(p) == ", sprintf(round(C_B_pval,2), fmt = "%#.4f"), | ||
sep = "")), | ||
size=8, parse=TRUE) | ||
|
||
ggsave(filename = paste(dat_path, | ||
"Chimp_N189_H2J_statistic_Rank17_R_perm_10e4.png", | ||
sep = "/")) | ||
|
||
# Macaque(MeanMacaque) template -> Juna expansion # | ||
|
||
perm_res_C_M <- vector("list", nperm) | ||
set.seed(47) | ||
for (perm_C in 1:nperm) { | ||
|
||
perm_res_C_M[[perm_C]] <- cor(x=chimp_M_dat$statistic, y=sample(chimp_M_dat$def_dat), | ||
method = "pearson") | ||
} | ||
# correlation between aging and baboon - chimp expansion of across OPNMF factors # | ||
C_M_cor <- cor(chimp_M_dat$statistic, chimp_M_dat$def_dat) | ||
# mnake a df fr easier ploting # | ||
perm_res_df_C_M <- data.frame(perm_R = unlist(perm_res_C_M)) | ||
# gather p-value | ||
C_M_pval <- sum(unlist(perm_res_C_M) <= C_M_cor ) / nperm | ||
|
||
ggplot(perm_res_df_C_M, aes(perm_R)) + | ||
geom_density(color= "#56B4E9", fill= "#56B4E9") + | ||
geom_vline(xintercept = C_M_cor, lwd=2, lty=2, color = "grey") + | ||
scale_x_continuous(limits = c(-1,1), breaks = seq(-1,1,0.5)) + | ||
labs(x = "Pearson's R", | ||
y = "Count") + | ||
theme_classic(base_size = 20) + | ||
annotate("text", x=0.75, y=c(1.3, 1.2), color = "#56B4E9", | ||
label = c(paste("italic(r) == ", round(C_M_cor, 2), sep=""), | ||
paste("italic(p) == ", sprintf(round(C_M_pval,2), fmt = "%#.4f"), | ||
sep = "")), | ||
size=8, parse=TRUE) | ||
|
||
ggsave(filename = paste(dat_path, | ||
"Chimp_N189_MM2J_statistic_Rank17_R_perm_10e4.png", | ||
sep = "/")) | ||
|
||
#### Plot the comparison of aging and expansion #### | ||
|
||
# HUMAN PLOT # | ||
labels_select <- c(5, 5+17, 3, 3+17, 4, 4+17, 16, 16+17, 15, 15+17, 8, 8+17, 13, | ||
13+17, 17, 17+17) | ||
|
||
#c(3, 3+17, 4, 4+17, 5, 5+17, 6, 6+17, 12, 12+17, 17, 17+17) | ||
# create a col for labels in plot # | ||
human_dat$labels_sel <- as.character(human_dat$factor) | ||
|
||
human_dat$labels_sel[-labels_select] <- "" | ||
|
||
ggplot(human_dat, aes(x = statistic, y = def_dat, color=Species)) + | ||
geom_point(size = 4.5) + | ||
scale_x_continuous(limits = c(4, 10.5), breaks = seq(4, 10, 1)) + | ||
scale_y_continuous(limits = c(0.6, 1.5), breaks = seq(0.6, 1.5, by = 0.1)) + | ||
geom_smooth(aes(fill = Species),formula = y ~ x, method = "rlm", linewidth = 1.5, alpha = 0.3) + | ||
geom_text_repel(aes(label = labels_sel), size = 10, box.padding = 1.5) + | ||
theme_bw() + | ||
scale_fill_manual(values = "#CC79A7") + | ||
scale_color_manual(values = "#CC79A7") + | ||
labs(x = "Age statistic in linear model\n (t-statistic)", | ||
y = "Relative Cross-species\n Expansion") + | ||
theme_classic(base_size = 25) + | ||
theme(legend.position = "none") | ||
|
||
|
||
ggsave(filename = paste(dat_path, | ||
"IXI_n480_J2M_rank17_statistic_exp_age_IXI_n189.png", | ||
sep = "/"), dpi = 1000) | ||
|
||
# Chimpanzee aging compared to both macaque and baboon expansion plot # | ||
|
||
# create a col for labels in plot # | ||
chimp_MB_dat$labels_sel <- as.character(chimp_MB_dat$factor) | ||
|
||
chimp_MB_dat$labels_sel[-labels_select] <- "" | ||
|
||
ggplot(chimp_MB_dat, aes(x = statistic, y = def_dat, color=Species)) + | ||
geom_point(size = 4.5) + | ||
scale_x_continuous(limits = c(1, 8), breaks = seq(1, 8, 1)) + | ||
scale_y_continuous(limits = c(0.6, 1.5), breaks = seq(0.6, 1.5, by = 0.1)) + | ||
geom_smooth(aes(fill = Species),formula = y ~ x, method = "rlm", size = 1.5, alpha = 0.3) + | ||
geom_text_repel(aes(label = labels_sel), size = 10, box.padding = 1) + | ||
theme_bw() + | ||
scale_fill_manual(values = c("#E1BE6A", "#56B4E9")) + | ||
scale_color_manual(values = c("#E1BE6A", "#56B4E9")) + | ||
labs(x = "Age statistic in linear model\n (t-statistic)", | ||
y = "Relative Cross-species\n Expansion") + | ||
theme_classic(base_size = 25) + | ||
theme(legend.position = "none") | ||
|
||
# save plot # | ||
ggsave(filename = paste(dat_path, | ||
"Chimp_n189_H2J_M2J_statistic_rank17_exp_age.png", | ||
sep = "/"), dpi = 1000) |