-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkaczmarz.py
673 lines (495 loc) · 15.5 KB
/
kaczmarz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
########################################
# kaczmarz.py
#
# Description. Set of functions related to Kaczmarz-based receivers.
#
# Author. @victorcroisfelt
#
# Date. May 21, 2021
#
# This code is part of the code package used to generate the results of the
# paper:
#
# V. C. Rodrigues, A. Amiri, T. Abrao, E. D. Carvalho and P. Popovski,
# "Accelerated Randomized Methods for Receiver Design in Extra-Large Scale
# MIMO Arrays," in IEEE Transactions on Vehicular Technology,
# doi: 10.1109/TVT.2021.3082520.
#
# Available on: https://ieeexplore.ieee.org/document/9437708
########################################
########################################
# Preamble
########################################
import numpy as np
########################################
# Private functions
########################################
def rand_discrete_variate(p_):
"""Draw an integer, discrete sample from a user-defined distribution. Only
returns one sample.
Parameters
----------
p_ : 1D ndarray of np.double
Vector with probabilities. Sum of its elements needs to be allclose to
1.0. Function checks if this is true. If not, it raises an error.
Returns
-------
rand : int
Randomly generated integer based on p_.
Raises
------
ValueError
If sum of p_ is not close to 1.0.
Notes
-----
If there are zero entries in p_, the integers associated with them are
disregarded. Possible values are defined by using the valid_indices vector.
"""
if not np.allclose(np.sum(p_), 1.0):
raise ValueError(
"the probability vector p_ is not a valid one."
)
valid_indices = np.flatnonzero(p_)
pnew = p_[valid_indices]
rand_index = sum(np.random.rand() > pnew.cumsum())
rand = valid_indices[rand_index]
return rand
########################################
# Public Functions
########################################
def nrk_rzf_iteration(H, G, y_, xi, niter_range=None, maxiter=None):
""" Estimate soft estimates using nRK-RZF.
Parameters
----------
H : 2D ndarray of numpy.cdouble
Channel matrix.
shape: (M,K)
G : 2D ndarray of numpy.cdouble
Channel Gramian matrix.
shape: (K,K)
y : 1D ndarray of numpy.cdouble
Received signal.
shape: (M,)
xi : float
Inverse of SNR.
maxiter : int
Maximum number of iterations. *Default" maxiter=None.
Returns
-------
xhat : 2D ndarray of numpy.cdouble
Soft estimates.
shape: (len(niter_range),K)
Notes
-----
p_ stands for sampling probability vector.
Alias
-----
sql2norm - squared l2-norm of a vector.
"""
M, K = H.shape
# Pre-processing (constants)
b_ = (H.conj().T*y_[None, :]).sum(-1)
sql2norm_eq = np.diag(G).real + xi
# Reciprocals
rec_eq = np.reciprocal(sql2norm_eq)
# Check entries
if maxiter is None:
# Length of the range of the number of iterations
len_niter = len(niter_range)
# Extract maxiter
maxiter = niter_range[-1]
# Initialization
u_ = np.zeros(M, dtype=np.cdouble)
v_ = np.zeros(K, dtype=np.cdouble)
# Sampling probability vector
p_ = sql2norm_eq/sql2norm_eq.sum()
# Vector with random selected equations
it_vec = np.random.choice(K, size=maxiter, replace=True, p=p_)
# Start number of iterations counter
t = 0
# Prepare to save soft estimates
if niter_range is None:
xhat = np.empty((K), dtype=np.cdouble)
else:
xhat = np.empty((len_niter, K), dtype=np.cdouble)
# Iterative process
while True:
# Iterative step
it = it_vec[t]
# Kaczmarz step
r_it = b_[it] - (H[:, it].conj()*u_).sum() - xi*v_[it]
gamma = rec_eq[it]*r_it
# Update step
u_ += gamma*H[:, it]
v_[it] += gamma
# Update iteration counter
t += 1
if niter_range is None:
# Check maxiter
if t == maxiter:
# Save result
xhat = v_.copy()
break
else:
# Check condition
if np.sum(t == niter_range) > 0:
# Get the index from niter_range
index = np.where(t == niter_range)[0][0]
# Save result
xhat[index] = v_.copy()
# Check maxiter
if t == maxiter:
break
return xhat
def rk_rzf_iteration(H, G, y_, xi, niter_range=None, maxiter=None):
""" Estimate user signal by using RK-RZF.
Parameters
----------
H : 2D ndarray of numpy.cdouble
Channel matrix.
shape: (M,K)
G : 2D ndarray of numpy.cdouble
Channel Gramian matrix.
shape: (K,K)
y : 1D ndarray of numpy.cdouble
Received signal.
shape: (M,)
xi : float
Inverse of SNR.
x_ : 1D ndarray of numpy.cdouble
RZF user signal estimates.
shape: (K,)
rtol : float or 1D ndarray of numpy.cdouble
Relative tolerance. *Default* rtol=1e-6.
maxiter : int
Maximum number of iterations. *Default" maxiter=None.
Returns
-------
xhat : 1D or 2D ndarray of numpy.cdouble
User signal estimates.
shape: (K,) or (len(rtol),K)
niter : int or 1D ndarray of numpy.uint
Number of iterations to convergence.
shape: (len(rtol),)
Notes
-----
p_ stands for probability vector.
Alias
-----
sql2norm - squared l2-norm of a vector.
"""
M, K = H.shape
# Pre-processing (constants)
b_ = (H.conj().T*y_[None, :]).sum(-1)
sql2norm_eq = np.diag(G).real + xi
# Reciprocals
rec_eq = np.reciprocal(sql2norm_eq)
# Check entries
if maxiter is None:
# Length of the range of the number of iterations
len_niter = len(niter_range)
# Extract maxiter
maxiter = niter_range[-1]
# Initialization
u_ = np.zeros(M, dtype=np.cdouble)
v_ = np.zeros(K, dtype=np.cdouble)
# Sampling probability vector
p_ = sql2norm_eq/sql2norm_eq.sum()
# Start number of iterations counter
t = 0
# Prepare to save soft estimates
if niter_range is None:
xhat = np.empty((K), dtype=np.cdouble)
else:
xhat = np.empty((len_niter, K), dtype=np.cdouble)
# Iterative process
while True:
# Sweep definition
if (t%K) == 0:
it_vect = list(np.random.choice(K, size=K, replace=False, p=p_))
# Iterative step
it = it_vect.pop(0)
# Kaczmarz step
r_it = b_[it] - (H[:, it].conj()*u_).sum() - xi*v_[it]
gamma = rec_eq[it]*r_it
# Update step
u_ += gamma*H[:, it]
v_[it] += gamma
# Update iteration counter
t += 1
if niter_range is None:
# Check maxiter
if t == maxiter:
# Save result
xhat = v_.copy()
break
else:
# Check condition
if np.sum(t == niter_range) > 0:
# Get the index from niter_range
index = np.where(t == niter_range)[0][0]
# Save result
xhat[index] = v_.copy()
# Check maxiter
if t == maxiter:
break
return xhat
def grk_rzf_iteration(H, G, y_, xi, niter_range=None, maxiter=None):
""" Estimate user signal by using GRK-RZF.
Parameters
----------
H : 2D ndarray of numpy.cdouble
Channel matrix.
shape: (M,K).
G : 2D ndarray of numpy.cdouble
Channel Gramian matrix.
shape: (K,K).
y : 1D ndarray of numpy.cdouble
Received signal.
shape: (M,).
xi : float
Inverse of SNR.
x_ : 1D ndarray of numpy.cdouble
RZF user signal estimates.
shape:(K,)
rtol : float or 1D ndarray of numpy.cdouble
Relative tolerance. *Default* rtol=1e-6.
maxiter : int
Maximum number of iterations. *Default" maxiter=None.
Returns
-------
xhat : 1D or 2D ndarray of numpy.cdouble
User signal estimates.
shape: (K,) or (len(rtol),K)
niter : int or 1D ndarray of numpy.uint
Number of iterations to convergence.
shape: (len(rtol),)
Notes
-----
G stands for the channel Gramian matrix. The diagonal of G plus xi is the
squared l2-norms of the equations. p_ vector stands for probability vector.
Alias
-----
sql2norm - squared l2-norm of a vector.
sqfrobnorm - squared Frobenius norm of a matrix.
RS - residual squares.
RSS - residual sum of squares.
"""
M, K = H.shape
# Pre-processing (constants)
b_ = (H.conj().T*y_[None, :]).sum(-1)
Ryy = G + xi*np.eye(K)
sql2norm_eq = np.diag(Ryy).real
sqfrobnorm_Bh = sql2norm_eq.sum()
# Reciprocals
rec_eq = np.reciprocal(sql2norm_eq)
rec_Bh = np.reciprocal(sqfrobnorm_Bh)
# Check entries
if maxiter is None:
# Length of the range of the number of iterations
len_niter = len(niter_range)
# Extract maxiter
maxiter = niter_range[-1]
# Initialization
u_ = np.zeros(M, dtype=np.cdouble)
v_ = np.zeros(K, dtype=np.cdouble)
r_ = b_.copy()
# Sampling probability vector
p_ = sql2norm_eq/sql2norm_eq.sum()
# Start number of iterations counter
t = 0
# Prepare to save soft estimates
if niter_range is None:
xhat = np.empty((K), dtype=np.cdouble)
else:
xhat = np.empty((len_niter, K), dtype=np.cdouble)
# Iterative process
while True:
# Iterative constants
absr_ = np.abs(r_)
RS = absr_*absr_
RSS = RS.sum()
# Step 01: determine set of working (active) equations
epsilon = 0.5*(((rec_eq*RS).max())/RSS + rec_Bh)
constant = epsilon*RSS
not_working_mask = np.where(RS < constant*sql2norm_eq)
# Step 02: obtain p_ vector
RStilde = RS.copy()
RStilde[not_working_mask] = 0.0
p_ = RStilde/RStilde.sum()
# Step 03: Kaczmarz projection
it = rand_discrete_variate(p_)
# Kaczrmaz step
gamma = rec_eq[it]*r_[it]
# Update step
u_ += gamma*H[:, it]
v_[it] += gamma
r_ -= gamma*Ryy[:, it]
# Update iteration counter
t += 1
if niter_range is None:
# Check maxiter
if t == maxiter:
# Save result
xhat = v_.copy()
break
else:
# Check condition
if np.sum(t == niter_range) > 0:
# Get the index from niter_range
index = np.where(t == niter_range)[0][0]
# Save result
xhat[index] = v_.copy()
# Check maxiter
if t == maxiter:
break
return xhat
def rsk_rzf_iteration(H, G, y_, xi, niter_range=None, maxiter=None):
""" Estimate user signal by using RSK-RZF.
Parameters
----------
H : 2D ndarray of numpy.cdouble
Channel matrix.
shape: (M,K)
G : 2D ndarray of numpy.cdouble
Channel Gramian matrix.
shape: (K,K)
y : 1D ndarray of numpy.cdouble
Received signal.
shape: (M,)
xi : float
Inverse of SNR.
x_ : 1D ndarray of numpy.cdouble
RZF user signal estimates.
shape: (K,)
rtol : float or 1D ndarray of numpy.cdouble
Relative tolerance. *Default* rtol=1e-6.
maxiter : int
Maximum number of iterations. *Default" maxiter=None.
omega : int
Size of the set of working equations.
Returns
-------
xhat : 1D or 2D ndarray of numpy.cdouble
User signal estimates.
shape: (K,) or (len(rtol),K)
niter : int or 1D ndarray of numpy.uint
Number of iterations to convergence.
shape: (len(rtol),)
Notes
-----
p_ stands for probability vector.
Alias
-----
sql2norm - squared l2-norm of a vector.
"""
M, K = H.shape
omega = None
if omega is None:
omega = np.ceil(np.log2(K)).astype(np.int)
# Pre-processing (constants)
b_ = (H.conj().T*y_[None, :]).sum(-1)
sql2norm_eq = np.diag(G).real + xi
sqfrobnorm_Bh = sql2norm_eq.sum()
# Reciprocals
rec_eq = np.reciprocal(sql2norm_eq)
rec_Bh = np.reciprocal(sqfrobnorm_Bh)
# Check entries
if maxiter is None:
# Length of the range of the number of iterations
len_niter = len(niter_range)
# Extract maxiter
maxiter = niter_range[-1]
# Initialization
u_ = np.zeros(M, dtype=np.cdouble)
v_ = np.zeros(K, dtype=np.cdouble)
# Sampling probability vector
p_ = sql2norm_eq/sql2norm_eq.sum()
# Start number of iterations counter
t = 0
# Prepare to save soft estimates
if niter_range is None:
xhat = np.empty((K), dtype=np.cdouble)
else:
xhat = np.empty((len_niter, K), dtype=np.cdouble)
# Iterative process
while True:
# Getting the set of working equations
working_eqs = np.random.choice(K, size=(omega), replace=False)
# Compute residuals of working equations
r_eqs = np.zeros(K, dtype=np.cdouble)
for w in working_eqs:
r_eqs[w] = b_[w] - (H[:, w].conj()*u_).sum() - xi*v_[w]
# Taking the absolute values and squaring
absr_eqs = np.abs(r_eqs)
RS_eqs = absr_eqs*absr_eqs
RR_eqs = rec_Bh*RS_eqs
# Find the index of the maximum residual
it = RR_eqs.argmax()
# Kaczmarz step
gamma = rec_eq[it]*r_eqs[it]
# Update
u_ += gamma*H[:, it]
v_[it] += gamma
# Update iteration counter
t += 1
if niter_range is None:
# Check maxiter
if t == maxiter:
# Save result
xhat = v_.copy()
break
else:
# Check condition
if np.sum(t == niter_range) > 0:
# Get the index from niter_range
index = np.where(t == niter_range)[0][0]
# Save result
xhat[index] = v_.copy()
# Check maxiter
if t == maxiter:
break
return xhat
def kaczmarz_maxiter(M, K, omega=None):
""" Compute maximum number of iterations for
1.nRK-RZF
2.RK-RZF
3.GRK-RZF
4.RSK-RZF
Parameters
----------
M : int
Number of antennas.
K : int
Number of users.
omega : int
Size of the set of working equations.
Returns
-------
maxiter : 1D ndarray of numpy.uint
Maximum number of iterations of all Kaczmarz-based RZF detection algos.
shape: (5,)
"""
maxiter = np.zeros(4, dtype=np.uint)
num = 4*K*K*M - 4*K*M + 5*K*K*K + 10*K*K - 2*K
if omega is None:
omega = np.ceil(np.log2(K)).astype(np.int)
# nRK-RZF
num_nrk = num - K + 1
den_nrk = 16*M + 8
maxiter[0] = np.floor(num_nrk/den_nrk).astype(np.uint)
# RK-RZF
num_rk = num + 1
den_rk = K + 16*M + 8
maxiter[1] = np.floor(num_rk/den_rk).astype(np.uint)
# rGRK-RZF
num_rgrk = K*(5*K*K + 11*K - 3)
den_rgrk = 16*K + 8*M + 7
maxiter[2] = np.floor(num_rgrk/den_rgrk).astype(np.uint)
# RSK-RZF
num_rsk = num
den_rsk = omega*(8*M + 9) + 8*M + 4
maxiter[3] = np.floor(num_rsk/den_rsk).astype(np.uint)
# Search for zeros
maxiter = np.where(maxiter < 1, 1, maxiter)
return maxiter