-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfigure5.py
181 lines (139 loc) · 4.98 KB
/
figure5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
########################################
# figure5.py
#
# Description. Script used to generate Figure 5 of the paper.
#
# Author. @victorcroisfelt
#
# Date. May 21, 2021
#
# This code is part of the code package used to generate the results of the
# paper:
#
# V. C. Rodrigues, A. Amiri, T. Abrao, E. D. Carvalho and P. Popovski,
# "Accelerated Randomized Methods for Receiver Design in Extra-Large Scale
# MIMO Arrays," in IEEE Transactions on Vehicular Technology,
# doi: 10.1109/TVT.2021.3082520.
#
# Available on: https://ieeexplore.ieee.org/document/9437708
########################################
########################################
# Preamble
########################################
import numpy as np
import time
from datetime import datetime
import multiprocessing
from joblib import Parallel
from joblib import dump, load
from newfunctions import *
from commsetup import *
import matplotlib.pyplot as plt
# Obtain the number of processors
num_cores = multiprocessing.cpu_count()
# Random seed
np.random.seed(42)
# Treating errors in numpy
np.seterr(divide='raise', invalid='raise')
########################################
# System parameters
########################################
# Number of antennas
M = 256
# Number of users
K = 32
# Number of effective antennas
D = 8
########################################
# Environment parameters
########################################
# Define pre-processing SNR
SNRdB = 0
SNR = 10**(SNRdB/10)
########################################
# Simulation parameters
########################################
# Define number of simulation setups
nsetups = 10
# Define number of channel realizations
nchnlreal = 100
########################################
# Running simulation
########################################
# Simulation header
print('--------------------------------------------------')
now = datetime.now()
print(now.strftime("%B %d, %Y -- %H:%M:%S"))
print('XL-MIMO: BER vs niter')
print('\t M = '+str(M))
print('\t K = '+str(K))
print('\t D = '+str(D))
print('\t SNR = '+str(SNRdB))
print('--------------------------------------------------')
# Prepare to save simulation results
ber_mr = np.zeros((nsetups, nchnlreal), dtype=np.double)
ber_rzf = np.zeros((nsetups, nchnlreal), dtype=np.double)
ber_nrk = np.zeros((niter_range.size, nsetups, nchnlreal), dtype=np.double)
ber_rk = np.zeros((niter_range.size, nsetups, nchnlreal), dtype=np.double)
ber_grk = np.zeros((niter_range.size, nsetups, nchnlreal), dtype=np.double)
ber_rsk = np.zeros((niter_range.size, nsetups, nchnlreal), dtype=np.double)
# Obtain qam transmitted signals
tx_symbs, x_ = qam_transmitted_signals(K, nsetups)
# Go through all setups
for s in range(nsetups):
print(f"setup: {s}/{nsetups-1}")
timer_setup = time.time()
# Generate communication setup
H = extra_large_mimo(M, K, D, nchnlreal)
# Compute the Gramian matrix
G = channel_gramian_matrix(H)
# Compute received signal
y_ = received_signal(SNR, x_[s], H)
# Perform MR receive combining
xhat_soft_mr = mrc_detection(H, y_)
# Evaluate RZF performance
ber_mr[s] = ber_evaluation(xhat_soft_mr, tx_symbs[s])
# Perform RZF receive combining
xhat_soft_rzf, xhat_rzf, Dinv_rzf = rzf_detection(SNR, H, G, y_)
# Evaluate RZF performance
ber_rzf[s] = ber_evaluation(xhat_soft_rzf, tx_symbs[s])
# Perform RK-based RZF schemes
with Parallel(n_jobs=num_cores) as parl:
xhat_soft_nrk, xhat_soft_rk, xhat_soft_grk, xhat_soft_rsk = kaczmarz_detection(SNR, H, G, y_, Dinv_rzf, niter_range, parl=parl)
# Go through each iteration point
for niter in range(len(niter_range)):
ber_nrk[niter, s] = ber_evaluation(xhat_soft_nrk[niter], tx_symbs[s])
ber_rk[niter, s] = ber_evaluation(xhat_soft_rk[niter], tx_symbs[s])
ber_grk[niter, s] = ber_evaluation(xhat_soft_grk[niter], tx_symbs[s])
ber_rsk[niter, s] = ber_evaluation(xhat_soft_rsk[niter], tx_symbs[s])
print('[setup] elapsed '+str(time.time()-timer_setup)+' seconds.\n')
now = datetime.now()
print(now.strftime("%B %d, %Y -- %H:%M:%S"))
print('--------------------------------------------------')
np.savez('xlmimo_ber_vs_niter_K'+str(K)+'_D'+str(D)+'.npz',
M=M,
K=K,
D=D,
niter_range=niter_range,
ber_mr=ber_mr,
ber_rzf=ber_rzf,
ber_nrk=ber_nrk,
ber_rk=ber_rk,
ber_grk=ber_grk,
ber_rsk=ber_rsk)
# Compute average values
ber_mr_avg = (ber_mr.mean(axis=-1)).mean(axis=-1)
ber_rzf_avg = (ber_rzf.mean(axis=-1)).mean(axis=-1)
ber_nrk_avg = (ber_nrk.mean(axis=-1)).mean(axis=-1)
ber_rk_avg = (ber_rk.mean(axis=-1)).mean(axis=-1)
ber_grk_avg = (ber_grk.mean(axis=-1)).mean(axis=-1)
ber_rsk_avg = (ber_rsk.mean(axis=-1)).mean(axis=-1)
fig, ax = plt.subplots()
ax.plot(niter_range, ber_mr_avg*np.ones((len(niter_range))))
ax.plot(niter_range, ber_rzf_avg*np.ones((len(niter_range))))
ax.plot(niter_range, ber_nrk_avg)
ax.plot(niter_range, ber_rk_avg)
ax.plot(niter_range, ber_grk_avg)
ax.plot(niter_range, ber_rsk_avg)
ax.set_yscale('log')
plt.show()