-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_DenseNet121.py
50 lines (34 loc) · 1.48 KB
/
train_DenseNet121.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from datetime import datetime
from model import DenseNet121, get_difference_in_seconds, append_row_to_csv
DEFAULT_DATE_TIME_FORMAT = "%Y%m%d-%H%M%S.%s"
complete_run_time_details_file_name = "DenseNet121_complete_run_timing_" + datetime.now().strftime(DEFAULT_DATE_TIME_FORMAT) + ".csv"
complete_run_timing_file = "./trainingTiming/" + complete_run_time_details_file_name
def main():
"""
Script entrypoint
"""
t_start = datetime.now()
header = ["Start Time", "End Time", "Duration (s)"]
row = [t_start.strftime(DEFAULT_DATE_TIME_FORMAT)]
dnn = DenseNet121()
# show class indices
print('****************')
for cls, idx in dnn.train_batches.class_indices.items():
print('Class #{} = {}'.format(idx, cls))
print('****************')
print(dnn.model.summary())
dnn.train(t_start, epochs=dnn.num_epochs, batch_size=dnn.batch_size, training=dnn.train_batches,
validation=dnn.valid_batches)
# save trained weights
dnn.model.save(dnn.file_weights + 'old')
dnn.model.save_weights(dnn.file_weights)
with open(dnn.file_architecture, 'w') as f:
f.write(dnn.model.to_json())
t_end = datetime.now()
difference_in_seconds = get_difference_in_seconds(t_start, t_end)
row.append(t_end.strftime(DEFAULT_DATE_TIME_FORMAT))
row.append(str(difference_in_seconds))
append_row_to_csv(complete_run_timing_file, header)
append_row_to_csv(complete_run_timing_file, row)
if __name__ == "__main__":
main()