-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
63 lines (59 loc) · 2.8 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
from torchvision import transforms
import onnxruntime as ort
from retinanet import model,quantise
from retinanet.dataloader import CocoDataset, Resizer, Normalizer,Resizer_const
from retinanet import coco_eval
import onnx
from onnxconverter_common import float16
def main(args=None):
# model_path ='/kaggle/input/retina_net/pytorch/model/1/coco_resnet_50_map_0_335_state_dict.pt'
# retinanet = model.resnet50(num_classes=80, pretrained=True).cuda()
# retinanet.load_state_dict(torch.load(model_path))
# retinanet.eval()
# example_input = torch.randn(1, 3,640,640).cuda()
# onnx_path = '/kaggle/working/fp32_updated.onnx'
# # torch.onnx.export(retinanet,example_input,onnx_path,opset_version=15)
# print('export completed')
# # model being run
# ort_session = onnxruntime.InferenceSession('/kaggle/working/fp32_updated.onnx')
# ort_inputs = {'input.1': None}
dataset_val = CocoDataset('/kaggle/input/coco-2017-dataset/coco2017', set_name='val2017',
transform=transforms.Compose([Normalizer(), Resizer_const()]))
# co=0
# for val in range(len(dataset_val)):
# d = dataset_val[val]
# print(d['img'],d['annot'])
# co=co+1
# if(co>0):break
# data = dataset_val[0]
# inputs = data['img'].permute(2, 0, 1).float().unsqueeze(dim=0)
# ort_inputs['input.1'] = inputs.cpu().numpy()
# ort_outs = ort_session.run(None, ort_inputs)
# anchors,classification = ort_outs[0], ort_outs[1]
# print(classification.shape,anchors.shape)
# data = dataset_val[0]
# inputs = data['img'].permute(2, 0, 1).float().unsqueeze(dim=0)
# ort_inputs['input.1'] = inputs.cpu().numpy()
# ort_outs = ort_session.run(None, ort_inputs)
# anchors,classification = ort_outs[0], ort_outs[1]
# print(classification.shape,anchors.shape)
onnx_fp_32_path ='/kaggle/input/fp_32_onnx_model/onnx/retina_net/1/fp32_updated.onnx'
# onnx_fp_16_path = '/kaggle/working/onnx_fp_16.onnx'
# onnx_32_model = onnx.load(onnx_fp_32_path)
# onnx_16_model = float16.convert_float_to_float16(onnx_32_model,min_positive_val=1e-7,max_finite_val=1e4)
# onnx.save(onnx_16_model,onnx_fp_16_path)
int8_onnx_path ='/kaggle/working/500_int_8_mm_w8a8.onnx'
pre_processed_path ='/kaggle/working/preprocessed.onnx'
# ort.quantization.shape_inference.quant_pre_process(onnx_fp_32_path, pre_processed_path)
module = quantise.OnnxStaticQuantization()
module.fp32_onnx_path =pre_processed_path
module.quantization(
fp32_onnx_path=pre_processed_path,
future_int8_onnx_path=int8_onnx_path,
calib_method="MinMax",
calibration_loader=dataset_val,
sample=500
)
if __name__ == '__main__':
main()