-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path10.tex
146 lines (129 loc) · 5.05 KB
/
10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
\section{}
\subsection{Some theorems of Burnside}
For $n\geq1$ let $\{e_1,\dots,e_n\}$ be the standard basis of $\C^n$.
The \emph{natural representation} of $\Sym_n$ is
$\rho\colon\Sym_n\to\GL_n(C)$, $\sigma\mapsto\rho_{\sigma}$,
where $\rho_\sigma(e_j)=e_{\sigma(j)}$ for all $j\in\{1,\dots,n\}$.
The matrix of $\rho_\sigma$ in the standard basis is
\begin{equation}
\label{eq:Sn_natural}
(\rho_\sigma)_{ij}=\begin{cases}
1 & \text{if $i=\sigma(j)$},\\
0 & \text{otherwise}.
\end{cases}
\end{equation}
\begin{lemma}
\label{lem:permutaciones}
For $n\geq1$ let $\rho\colon\Sym_n\to\GL_n(C)$ be the natural
representation of the symmetric group.
If $A\in\C^{n\times n}$ and $\sigma\in\Sym_n$, then
\[
A_{ij}=(\rho_{\sigma}A)_{\sigma(i)j}=(A\rho_{\sigma})_{i\sigma^{-1}(j)}
\]
for all $i,j\in\{1,\dots,n\}$.
\end{lemma}
\begin{proof}
With~\eqref{eq:Sn_natural} we compute:
\[
(A\rho_{\sigma})_{ij}=\sum_{k=1}^n A_{ik}(\rho_{\sigma})_{kj}=A_{i\sigma(j)},
\quad
(\rho_\sigma A)_{ij}=\sum_{k=1}^n (\rho_\sigma)_{ik}A_{kj}=A_{\sigma^{-1}(i)j}.\qedhere
\]
\end{proof}
\begin{definition}
\index{Real!character}
Let $G$ be a finite group. A character $\chi$ of $G$ is said to be
\emph{real} if
$\chi=\overline{\chi}$, that is $\chi(g)\in\R$ for all $g\in G$.
\end{definition}
\begin{exercise}
\label{xca:chi_irreducible}
Let $G$ be a finite group. If $\chi\in\Irr(G)$, then
$\overline{\chi}$ is irreducible.
\end{exercise}
\begin{definition}
\index{Real!conjugacy class}
Let $G$ be a group. A conjugacy class $C$ of $G$ is said to be
\emph{real} if for every $g\in C$ one has $g^{-1}\in C$.
\end{definition}
We use the following notation: if $G$ is a group and $C=\{xgx^{-1}:x\in G\}$ is a conjugacy class of
$G$, then $C^{-1}=\{xg^{-1}x^{-1}:x\in G\}$.
\begin{theorem}[Burnside]
\index{Burnside's!theorem}
Let $G$ be a finite group. The number of real conjugacy classes
equals the number of real irreducible characters.
\end{theorem}
\begin{proof}
Let $C_1,\dots,C_r$ be the conjugacy classes of $G$ and
let $\chi_1,\dots,\chi_r$ be the irreducible characters of $G$.
Let $\alpha,\beta\in\Sym_r$ be such that $\overline{\chi_i}=\chi_{\alpha(i)}$ and
$C_i^{-1}=C_{\beta(i)}$ for all $i\in\{1,\dots,r\}$. Note that $\chi_i$
is real if and only if $\alpha(i)=i$ and that $C_i$ is real if and only if
$\beta(i)=i$. The number $n$ of fixed points of $\alpha$ is equal to the number
of real irreducible characters of $G$, and the number $m$ of fixed points of $\beta$ is equal
to the number of real classes.
Let $\rho\colon\Sym_r\to\GL_r(\C)$ be the natural representation of $\Sym_r$, with character $\chi_\rho$.
Then $\chi_\rho(\alpha)=n$ and $\chi_\rho(\beta)=m$. We claim that
$\trace\rho_\alpha=\trace\rho_\beta$.
Let $X\in\GL(r,\C)$ be the character matrix of $G$.
By Lemma~\ref{lem:permutaciones}
and the fact that $\overline{\chi(g)}=\chi(g^{-1})$ for all $g\in G$,
\[
\rho_\alpha X=\overline{X}=X\rho_\beta.
\]
Since $X$ is invertible, $\rho_{\alpha}=X\rho_{\beta}X^{-1}$. Thus
\[
n=\chi_{\rho}(\alpha)=\trace\rho_{\alpha}=\trace\rho_{\beta}=\chi_{\rho}(\beta)=m.\qedhere
\]
\end{proof}
\begin{corollary}
\label{corollary:|G|impar}
Let $G$ be a finite group. Then $|G|$ is odd if and only if
the only real $\chi\in\Irr(G)$ is the trivial character.
\end{corollary}
\begin{proof}
We first prove $\impliedby$. If $|G|$ is even, there exists
$g\in G$ of order two (Cauchy's theorem). The conjugacy class of $g$
is real.
We now prove $\implies$. Assume that $G$ has a non-trivial
real conjugacy class $C$. Let $g\in C$. We claim that
$G$ has an element of even order. Let $h\in G$ be such that
$hgh^{-1}=g^{-1}$. Then $h^2\in C_G(g)$, as $h^2gh^{-2}=g$.
If $h\in\langle h^2\rangle\subseteq C_G(g)$, then $g$ has
even order, as $g^{-1}=g$. If $h\not\in\langle h^2\rangle$, then
$h^2$ does not generate $\langle h\rangle$. Hence $h$ has even order,
as $|h|\ne|h^2|=|h|/\gcd(|h|,2)$, so $\gcd(|h|,2)\ne 1$.
\end{proof}
\begin{theorem}[Burnside]
\index{Burnside's!theorem}
\label{thm:Burnside_mod16}
Let $G$ be a finite group of odd order
with $r$ conjugacy classes. Then
$r\equiv|G|\bmod{16}$.
\end{theorem}
\begin{proof}
Since $|G|$ is odd, every non-trivial $\chi\in\Irr(G)$ is not real by
the previous corollary. The irreducible characters
of $G$ are
\[
\chi_1,\chi_2,\overline{\chi_2},\dots,\chi_k,\overline{\chi_k},
\quad
r=1+2(k-1),
\]
where $\chi_1$ denotes the trivial character.
For every $j\in\{2,\dots,k\}$ let $d_j=\chi_j(1)$.
Since each $d_j$ divides
$|G|$ by Frobenius' theorem and $|G|$ is odd,
every $d_j$ is an odd number,
say $d_j=1+2m_j$. Thus
\begin{align*}
|G|&=1+\sum_{j=2}^k 2d_j^2=1+\sum_{j=2}^k2(2m_j+1)^2\\
&=1+\sum_{j=2}^k2(4m_j^2+4m_j+1)
=1+2(k-1)+8\sum_{j=2}^km_j(m_j+1).
\end{align*}
Hence $|G|\equiv r\bmod{16}$,
as $r=1+2k$ and every $m_j(m_j+1)$ is even.
\end{proof}
\begin{exercise}
Prove that every group of order 15 is abelian.
\end{exercise}