-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path06.tex
501 lines (445 loc) · 15.8 KB
/
06.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
\section{}
\subsection{McKay's conjecture}
\label{McKay}
Let $G$ be a finite group and let $p$ be a prime number dividing
$|G|$. Write $\Syl_p(G)$ to denote the (non-empty) set of Sylow
$p$-subgroups of $G$. Recall that
the \emph{normalizer} of $P$ is the subgroup
\[
N_G(P)=\{g\in G:gPg^{-1}=P\}.
\]
McKay made the following conjecture for the prime $p=2$ and simple groups
and later generalized by Alperin in~\cite{MR0404417} and independently
by Isaacs in~\cite{MR332945}.
\begin{conjecture}[McKay]
\index{McKay's conjecture}
\label{conjecture:McKay}
Let $p$ be a prime. If
$G$ is a finite group and $P\in\Syl_p(G)$, then
\[
|\{\chi\in\Irr(G): p\nmid \chi(1)\}|
=|\{\psi\in\Irr(N_G(P)): p\nmid\psi(1)\}|.
\]
\end{conjecture}
McKay's conjecture is still open and is a crucial problem in representation theory.
The conjecture was proved for several classes of groups. Isaacs
proved the conjecture for solvable groups; see~\cite{MR332945,MR3791517}.
Malle and Sp\"ath prove the conjecture for $p=2$.
\begin{theorem}[Malle--Sp\"ath]
\index{Malle--Sp\"ath theorem}
If $G$ is finite and $P\in\Syl_2(G)$,
then
\[
|\{\chi\in\Irr(G): 2\nmid \chi(1)\}|
=|\{\psi\in\Irr(N_G(P)): 2\nmid\psi(1)\}|.
\]
\end{theorem}
The proof appears in~\cite{MR3549625} and uses the classification of
finite simple groups. It uses a deep result of
Isaacs, Malle and Navarro~\cite{MR2336079}.
We cannot prove Malle--Sp\"ath theorem here. However,
we can use the computer to prove some particular cases
with the following function:
\begin{lstlisting}
gap> McKay := function(G, p)
> local N, n, m;
> N := Normalizer(G, SylowSubgroup(G, p));
> n := Number(Irr(G), x->Degree(x) mod p <> 0);
> m := Number(Irr(N), x->Degree(x) mod p <> 0);
> return n = m;
> end;
function( G, p ) ... end
\end{lstlisting}
As a concrete example, let us
verify McKay's conjecture for the Mathieu simple group
$M_{11}$ of order 7920.
\begin{lstlisting}
gap> M11 := MathieuGroup(11);;
gap> PrimeDivisors(Order(M11));
[ 2, 3, 5, 11 ]
gap> McKay(M11,2);
true
gap> McKay(M11,3);
true
gap> McKay(M11,5);
true
gap> McKay(M11,11);
true
\end{lstlisting}
The following conjecture refines McKay's conjecture. It was
formulated by Isaacs and Navarro:
\begin{conjecture}[Isaacs--Navarro]
\index{Isaacs--Navarro conjecture}
\label{conjecture:IsaacsNavarro}
Let $p$ be a prime and $k\in\Z$.
If $G$ is a finite group and $P\in\Syl_p(G)$,
then
\begin{align*}
|\{\chi\in\Irr(G):&p\nmid \chi(1)\text{ and }\chi(1)\equiv\pm k\bmod p\}|\\
&=|\{\psi\in\Irr(N_G(P)):p\nmid\psi(1)\text{ and }\psi(1)\equiv\pm k\bmod p\}|.
\end{align*}
\end{conjecture}
Isaacs--Navarro conjecture is still open. However,
it is known to be true for solvable groups,
sporadic simple groups and
symmetric groups, see~\cite{MR1935849}.
\begin{lstlisting}
gap> IsaacsNavarro := function(G, k, p)
> local m, n, N;
> N := Normalizer(G, SylowSubgroup(G, p));
> m := Number(Filtered(Irr(G), x->Degree(x)\
> mod p <> 0), x->Degree(x) mod p in [-k,k] mod p);
> n := Number(Filtered(Irr(N), x->Degree(x)\
> mod p <> 0), x->Degree(x) mod p in [-k,k] mod p);
> return n=m;
> end;
function( G, k, p ) ... end
\end{lstlisting}
It is an exercise to verify Isaacs--Navarro conjecture in some
small groups such the Mathieu simple group $M_{11}$.
\subsection{Commutators}
\label{commutators}
Let $G$ be a finite group with conjugacy classes $C_1,\dots,C_s$. For
$i\in\{1,\dots,s\}$ and $\chi\in\Irr(G)$ let
\[
\omega_{\chi}(C_i)=\frac{|C_i|\chi(C_i)}{\chi(1)}\in\A.
\]
In the proof of Theorem \ref{thm:B}, Equality \eqref{eq:omega},
we obtained
that
\begin{equation}
\label{eq:again_omega}
\omega_\chi(C_i)\omega_\chi(C_j)=\sum_{k=1}^sa_{ijk}\omega_{\chi}(C_k),
\end{equation}
where $a_{ijk}$ is the number of solutions
of $xy=z$ with $x\in C_i$, $y\in C_j$ and $z\in C_k$.
\begin{theorem}[Burnside]
\index{Burnside's theorem}
Let $G$ be a finite group with conjugacy classes $C_1,\dots,C_s$.
Then
\[
a_{ijk}
=\frac{|C_i||C_j|}{|G|}
\sum_{\chi\in\Irr(G)}\frac{\chi(C_i)\chi(C_j)\overline{\chi(C_k)}}{\chi(1)}.
\]
\end{theorem}
\begin{proof}
By \eqref{eq:again_omega},
\[
\frac{|C_i||C_j|}{\chi(1)}\chi(C_i)\chi(C_j)
=\sum_{k=1}^sa_{ijk}|C_k|\chi(C_k).
\]
Multiply by $\overline{\chi(C_l)}$ and sum over all
$\chi\in\Irr(G)$ to obtain
\begin{align*}
|C_i||C_j|\sum_{\chi\in\Irr(G)}\frac{\overline{\chi(C_l)}}{\chi(1)}\chi(C_i)\chi(C_j)
&=\sum_{\chi\in\Irr(G)}\sum_{k=1}^sa_{ijk}|C_k|\chi(C_k)\overline{\chi(C_l)}\\
&=\sum_{k=1}^sa_{ijk}|C_k|\sum_{\chi\in\Irr(G)}\chi(C_k)\overline{\chi(C_l)}\\
&=a_{ijl}|G|,
\end{align*}
because
\[
\sum_{\chi\in\Irr(G)}\chi(C_k)\overline{\chi(C_l)}=\begin{cases}
\frac{|G|}{|C_l|} & \text{if $k=l$},\\
0 & \text{otherwise}.
\end{cases}\qedhere
\]
\end{proof}
\begin{theorem}[Burnside]
\index{Burnside's theorem}
Let $G$ be a finite group and $g,x\in G$. Then
$g$ and $[x,y]$ are conjugate for some $y\in G$ if and only if
\[
\sum_{\chi\in\Irr(G)}\frac{|\chi(x)|^2\chi(g)}{\chi(1)}>0.
\]
\end{theorem}
\begin{proof}
Let $C_1,\dots,C_s$ be the conjugacy classes of $G$. Assume that
$x\in C_i$ and $g\in C_k$ for some $i$ and $k$. Then
$C_i^{-1}=\{z^{-1}:z\in C_i\}=C_j$ for some $j$. By Burnside's theorem,
\[
a_{ijk}
=\frac{|C_i|^2}{|G|}\sum_{\chi\in\Irr(G)}\frac{|\chi(C_i)|^2\overline{\chi(C_k)}}{\chi(1)}.
\]
We first prove $\impliedby$. Since $a_{ijk}>0$,
there exist $u\in C_i$ and $v\in C_j$ such that
$g=uv$ (since $zgz^{-1}=u_1v_1$ for some $u_1\in C_i$ and
$v_1\in C_j$, it follows that
$g=(z^{-1}u_1z)(z^{-1}v_1z)$, so take $u=z^{-1}u_1z\in C_i$ and
$v=z^{-1}v_1z\in C_j$). If $x$ and $u$ are conjugate, say
$u=zxz^{-1}$ for some $z$, then $x^{-1}$ and
$v$ are conjugate, as
\[
zxz^{-1}=u\implies zx^{-1}z^{-1}=u^{-1}\in C_i^{-1}=C_j.
\]
Let $z_2\in G$ be such that $z_2x^{-1}z_2^{-1}=v$.
If $y=z^{-1}z_2$, then $g$ and $[x,y]$ are conjugate, as
\[
g=uv=(zxz^{-1})(z_2x^{-1}z_2^{-1})=(zxyx^{-1}y^{-1})yz_2^{-1}
=z[x,y]z^{-1}.
\]
We now prove $\implies$. Let $y\in G$ be such that $g$ and
$[x,y]$ are conjugate, say $g=z[x,y]z^{-1}$ for some $z\in G$. Let
$v=yxy^{-1}$. Then
$g$ and $xv^{-1}=xyx^{-1}y^{-1}=[x,y]$ are conjugate. In particular,
since $g\in C_iC_j$, $a_{ijk}>0$.
\end{proof}
\begin{exercise}
\label{xca:commutators}
Let $G$ be a finite group, $g\in G$ and $\chi\in\Irr(G)$.
Prove that
\begin{align*}
&\sum_{h\in G}\chi([g,h])=\frac{|G|}{\chi(1)}|\chi(g)|^2.
\shortintertext{Prove also that }
&\chi(g)\chi(h)=\frac{\chi(1)}{|G|}\sum_{z\in G}\chi(zgz^{-1}h)
\end{align*}
holds for all $h\in G$.
\end{exercise}
We now prove a theorem of Frobenius that
uses character tables to recognize commutators. For that purpose,
let
\[
\tau(g)=|\{(x,y)\in G\times G:[x,y]=g\}|.
\]
\begin{theorem}[Frobenius]\label{thm:Frobenius_tau(g)}
\index{Frobenius' theorem}
Let $G$ be a finite group. Then
\[
\tau(g)=|G|\sum_{\chi\in\Irr(G)}\frac{\chi(g)}{\chi(1)}.
\]
\end{theorem}
\begin{proof}
Let $\chi\in\Irr(G)$. Since $\chi$ is irreducible,
\[
1=\langle\chi,\chi\rangle
=\frac{1}{|G|}\sum_{z\in G}\chi(z)\overline{\chi(z)}
=\frac{1}{|G|}\sum_{C}|C|\chi(C)\overline{\chi(C)},
\]
where the last sum is taken over all conjugacy classes of $G$.
Let $g\in G$ and $C$ be the conjugacy class of $g$. The equation
$xu^{-1}=g$ with $x\in C$ and $u\in C^{-1}$ has
\[
\frac{|C||C^{-1}|}{|G|}\sum_{\chi\in\Irr(G)}\frac{\chi(C)\chi(C^{-1})\chi(g^{-1})}{\chi(1)}
\]
solutions. If $(x,u)$ is a solution of $xu^{-1}=g$, then
there are $|C_G(x)|$ elements $y$ such that $yxy^{-1}=u$. ($yxy^{-1}=u=y_1xy_1^{-1}$ implies that $y_1^{-1}y\in C_G(x)$ which implies $yC_G(x)=y_1C_G(x)$.) Now
$[x,y]=x(yx^{-1}y^{-1})=g$ has
\[
|C|\sum_{\chi}\frac{\chi(C)\chi(C^{-1})\chi(g^{-1})}{\chi(1)}
\]
solutions, where the sum is taken over all irreducible characters of $G$.
Now we sum over all conjugacy classes of $G$:
\begin{align*}
\sum_{C}\sum_{\chi}|C|\frac{\chi(C)\chi(C^{-1})\chi(g^{-1})}{\chi(1)}
&=\sum_{\chi}\frac{\chi(g^{-1})}{\chi(1)}\left(\sum_C|C|\chi(C)\chi(C^{-1})\right)\\
&=|G|\sum_{\chi}\frac{\chi(g^{-1})}{\chi(1)}.
\end{align*}
From this, the formula follows.
\end{proof}
Application:
\begin{corollary}
Let $G$ be a finite group and $g\in G$. Then $g$
is a commutator if and only if
\[
\sum_{\chi\in\Irr(G)}\frac{\chi(g)}{\chi(1)}\ne0.
\]
\end{corollary}
\subsection{Ore's conjecture}
\label{Ore}
In 1951 Ore and independently It\^o
proved that every element of any alternating simple group is a commutator.
Ore also mentioned that ``it is possible that a similar theorem holds for any simple group of finite order, but it seems that at present we do not have the necessary methods to investigate the question".
\begin{conjecture}[Ore]
\index{Ore's conjecture}
\label{conjecture:Ore}
Let $G$ be a finite simple non-abelian group.
Then every element of $G$ is a commutator.
\end{conjecture}
Ore's conjecture was proved in 2010:
\begin{theorem}[Liebeck--O'Brien--Shalev--Tiep]
\index{Liebeck--O'Brien--Shalev--Tiep theorem}
Every element of a non-abelian finite simple group is a commutator.
\end{theorem}
The proof appears in~\cite{MR2654085}. It needs about 70 pages and
uses the classification of finite simple groups (CFSG) and character theory.
See \cite{MR3289286} for more information on Ore's conjecture and its proof.
Although the proof of Ore's conjecture is too complicated for
this course, we can use the computer to
prove the conjecture in some particular cases:
\begin{proposition}
Ore's conjecture is true
for sporadic simple groups.
\end{proposition}
\begin{proof}
Let $G$ be a finite simple group.
We know that $g\in G$ is a commutator if and only if
$\sum_{\chi\in\Irr(G)}\frac{\chi(g)}{\chi(1)}\ne 0$. Let us write
a computer script to check whether every element in a group
is a commutator. Our
function needs the character table of a group and returns
\lstinline{true} if every element of the group is a commutator and
\lstinline{false} otherwise.
\begin{lstlisting}
gap> Ore := function(char)
> local s,f,k;
> for k in [1..NrConjugacyClasses(char)] do
> s := 0;
> for f in Irr(char) do
> s := s+f[k]/Degree(f);
> od;
> if s<=0 then
> return false;
> fi;
> od;
> return true;
> end;
function( char ) ... end
\end{lstlisting}
Now we check Ore's conjecture for Mathieu simple groups
and for the Monster group:
\begin{lstlisting}
gap> Ore(CharacterTable("M11"));
true
gap> Ore(CharacterTable("M12"));
true
gap> Ore(CharacterTable("M22"));
true
gap> Ore(CharacterTable("M23"));
true
gap> Ore(CharacterTable("M24"));
true
gap> Ore(CharacterTable("M"));
true
\end{lstlisting}
It is an exercise to check the conjecture for the other finite sporadic
simple groups $McL$, $Ru$, $Ly$, $Suz$, $He$, $HN$, $Th$, $Fi_{22}$, $Fi_{23}$, $Fi_{24}'$, $B$, $M$
\end{proof}
See \cite{MR3821142} for other applications of character theory.
\subsection{Cauchy--Frobenius--Burnside theorem}
\begin{theorem}[Cauchy--Frobenius--Burnside]
\label{thm:CFB}
\index{Cauchy--Frobenius--Burnside theorem}
Let $G$ be a finite group that acts on a finite set $X$.
If $m$ is the number of orbits, then
\[
m=\frac{1}{|G|}\sum_{g\in G}|\Fix(g)|,
\]
where $\Fix(g)=\{x\in X:g\cdot x=x\}$.
\end{theorem}
\begin{proof}
Let $X=\{x_1,\dots,x_n\}$ and $V$ be the complex vector space with basis $\{x_1,\dots,x_n\}$.
Let $\rho\colon G\to\GL_n(\C)$, $g\mapsto\rho_g$, be the representation
\[
(\rho_g)_{ij}=\begin{cases}
1 & \text{if $g\cdot x_j=x_i$},\\
0 & \text{otherwise}.
\end{cases}
\]
In particular, $(\rho_g)_{ii}=1$ if $x_i\in\Fix(g)$ and
$(\rho_g)_{ii}=0$ if $x_i \notin \Fix(g)$. Thus
\[
\chi_\rho(g)=\trace\rho_g=\sum_{i=1}^n(\rho_g)_{ii}=|\Fix(g)|.
\]
Recall that
\begin{gather*}
V^G=\{v\in V:g\cdot v=v\text{ for all $g\in G$}\}
\shortintertext{and that}
\dim V^G=\frac{1}{|G|}\sum_{z\in G}\chi_{\rho}(z)=\langle\chi_\rho,\chi_1\rangle
\end{gather*}
where $\chi_1$ is the trivial character of $G$.
We can assume that, after a possible re-enumeration,
$x_1,\dots,x_m$ are the representatives of the orbits
of $G$ on $X$. For $i\in\{1,\dots,m\}$, let
$v_i=\sum_{x\in G\cdot x_i}x$.
\begin{claim}
$\{v_1,\dots,v_m\}$ is a basis of $V^G$.
\end{claim}
If $g\in G$, then $g\cdot v_i=\sum_{x\in G\cdot x_i}g\cdot x=
\sum_{y\in G\cdot x_i}y=v_i$. Hence $\{v_1,\dots,v_m\}\subseteq V^G$. Moreover,
$\{v_1,\dots,v_m\}$ is linearly independent because the $v_j$ are
orthogonal and non-zero:
\[
\langle v_i,v_j\rangle=\begin{cases}
|G\cdot x_i| & \text{if $i=j$},\\
0 & \text{otherwise}.
\end{cases}
\]
We now prove that $V^G=\langle v_1,\dots,v_m\rangle$. Let $v\in V^G$.
Then $v=\sum_{x\in X}\lambda_xx$ for some coefficients $\lambda_x\in\C$.
If $g\in G$, then $g\cdot v=v$. Since
\[
\sum_{x\in X}\lambda_xx=v=g\cdot v
=\sum_{x\in X}\lambda_x(g\cdot x)
=\sum_{x\in X}\lambda_{g^{-1}\cdot x}x,
\]
it follows that $\lambda_x=\lambda_{g^{-1}\cdot x}$ for all $x\in X$ and
$g\in G$. This means that if $y,z\in X$ and $g\in G$ is such that
$g\cdot y=z$, then $\lambda_y=\lambda_z$. Thus
\[
v=\sum_{x\in X}\lambda_xx=\sum_{i=1}^m\lambda_{x_i}\sum_{y\in G\cdot x_i}y
=\sum_{i=1}^m \lambda_{x_i}v_i.
\]
Hence
\[
m=\dim V^G=\langle\chi_\rho,\chi_1\rangle=\frac{1}{|G|}\sum_{z\in G}\chi_\rho(z)
=\frac{1}{|G|}\sum_{z\in G}|\Fix(z)|.\qedhere
\]
\end{proof}
It is possible to give an alternative short proof of the theorem. For example,
for transitive actions (i.e., $m=1$), we proceed as follows:
\[
\sum_{g\in G}|\Fix(g)|=\sum_{g\in G}\sum_{\substack{x\in X\\g\cdot x=x}}1
=\sum_{x\in X}\sum_{\substack{g\in G\\g\cdot x=x}}1
=\sum_{x\in X}|G_x|=|G_x||X|=|G|.
\]
\begin{exercise}
\label{xca:CFB}
Use the previous idea to prove Theorem \ref{thm:CFB}.
\end{exercise}
\index{Orbital}
\index{Rank}
Let $G$ act on a finite set $X$. Then $G$ acts
on $X\times X$ by
\begin{equation}
\label{eq:orbitals}
g\cdot (x,y)=(g\cdot x,g\cdot y).
\end{equation}
The orbits of this action are called
the \emph{orbitals} of $G$ on $X$. The \emph{rank}
of $G$ on $X$ is the number of orbitals.
\begin{proposition}
Let $G$ be a group that acts on a finite set $X$.
The rank of $G$ on $X$ is
\[
\frac{1}{|G|}\sum_{g\in G}|\Fix(g)|^2.
\]
\end{proposition}
\begin{proof}
The action \eqref{eq:orbitals} has
$\Fix(g)\times\Fix(g)$ as fixed points, as
\begin{align*}
g\cdot (x,y)=(x,y)&\Longleftrightarrow
(g\cdot x,g\cdot y)=(x,y)\\
&\Longleftrightarrow g\cdot x=x\text{ and }g\cdot y=y\Longleftrightarrow
(x,y)\in\Fix(g)\times\Fix(g).
\end{align*}
Now the claim follows from Cauchy--Frobenius--Burnside theorem.
\end{proof}
\begin{definition}
Let $G$ act on a finite set $X$.
We say that $G$ is \emph{2-transitive} on $X$
if given $x,y\in X$ with $x\ne y$ and
$x_1,y_1\in X$ with $x_1\ne y_1$ there exists
$g\in G$ such that $g\cdot x=x_1$ and $g\cdot y=y_1$.
\end{definition}
The symmetric group $\Sym_n$ acts 2-transitively on $\{1,\dots,n\}$.
\begin{proposition}
If $G$ is 2-transitive on $X$, then the rank of $G$ on $X$ is two.
\end{proposition}
\begin{proof}
The set $\Delta=\{(x,x):x\in X\}$ is an orbital. The complement
$X\times X\setminus\Delta$ is another orbital: if $x,x_1,y,y_1\in X$
are such that $x\ne y$
and $x_1\ne y_1$, then there exists $g\in G$ such that
$g\cdot x=x_1$ and $g\cdot y=y_1$, so $g\cdot (x,y)=(x_1,y_1)$.
\end{proof}