-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path03.tex
557 lines (500 loc) · 16.6 KB
/
03.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
\section{}
We now describe three crucial examples of representations.
\begin{example}[The trivial representation]
\index{Trivial!representation}
\index{Trivial!module}
The map $\rho\colon G\to\C^{\times}$, $g\mapsto 1$,
is a representation, that is $\C$ is a $\C[G]$-module with
$g\cdot \lambda=\lambda$ for all $g\in G$
and $\lambda\in\C^{\times}$.
\end{example}
\begin{example}
Let $\rho\colon G\to\GL(V)$ and
$\psi\colon G\to\GL(W)$ be representations. The \emph{direct sum}
$\rho\oplus\psi\colon G\to\GL(V\oplus W)$, $g\mapsto (\rho_g,\psi_g)$,
is a representation. This is equivalent to say that
the vector space $V\oplus W$ is a $\C[G]$-module with
\[
g\cdot (v,w)=(g\cdot v,g\cdot w),\quad
g\in G,\;v\in v,\;w\in W.
\]
\end{example}
Let $V$ be a vector space with basis $\{v_1,\dots,v_k\}$ and
$W$ be a vector space with basis $\{w_1,\dots,w_l\}$. A
\emph{tensor product} of $V$ and $W$ is a vector space $X$ with
together with a bilinear map
\[
V\times W\to X,
\quad
(v,w)\mapsto v\otimes w,
\]
such that $\{v_i\otimes w_j:1\leq i\leq k,\,1\leq j\leq l\}$ is a
basis of $X$. The tensor product of $V$ and $W$ is unique up to isomorphism
and it is denoted by $V\otimes W$. Note that
\[
\dim(V\otimes W)=(\dim V)(\dim W).
\]
\begin{example}
Let $V$ and $W$ be $\C[G]$-modules. The \emph{tensor product}
$V\otimes W$
is a $\C[G]$-module
with
\[
g\cdot v\otimes w=g\cdot v\otimes g\cdot w,
\quad
g\in G,\;v\in V,\;w\in W.
\]
\end{example}
Let $\rho\colon G\to\GL(V)$ and $\psi\colon G\to\GL(W)$ be representations.
The \emph{tensor product} of $\rho$ and $\psi$ is the representation of $G$ given by
\begin{gather*}
\rho\otimes\psi\colon G\to\GL(V\otimes W),
\quad
g\mapsto (\rho\otimes\psi)_g,
\shortintertext{where}
(\rho\otimes\psi)_g(v\otimes w)=\rho_g(v)\otimes \psi_g(w)
\end{gather*}
for $v\in V$ and $w\in W$.
\begin{exercise}
Let $G$ be a finite group and
$V$ and $W$ be $\C[G]$-modules. Prove that
the set $\Hom(V,W)$ of complex linear maps $V\to W$
is a $\C[G]$-module
with
\[
(g\cdot f)(v)=gf(g^{-1}v),\quad
f\in\Hom(V,W),\;v\in V,\;g\in G.
\]
If, moreover, $V$ and $W$ are finite-dimensional, then
\[
V^{*}\otimes W\simeq\Hom(V,W)
\]
as $\C[G]$-modules.
\end{exercise}
The previous exercise shows, in particular,
that the dual $V^*$ of a $\C[G]$-module $V$
is a $\C[G]$-module with
\[
(g\cdot f)(v)=f(g^{-1}v),\quad
f\in V^*,\;v\in V,\;g\in G.
\]
\begin{definition}
\index{Representation!completely reducible}
A representation $\rho\colon G\to\GL(V)$ is said to be
\emph{completely reducible}
if $\rho$ can be decomposed as
$\rho=\rho_1\oplus\cdots\oplus \rho_n$ for some irreducible
representations $\rho_1,\dots,\rho_n$ of $G$.
\end{definition}
Note that if $\rho\colon G\to\GL(V)$ is completely reducible and
$\rho=\rho_1\oplus\cdots\oplus \rho_n$ for some irreducible representations
$\rho_i\colon G\to\GL(V_i)$, $i\in\{1,\dots,n\}$, then
each $V_i$ is an invariant subspace of $V$ and $V=V_1\oplus \cdots V_n$.
Moreover, in some basis of $V$, the matrix
$\rho_g$ can be written as
\[
\rho_g=\begin{pmatrix}
(\rho_1)_g & \\
& (\rho_2)_g \\
&&\ddots\\
&&&(\rho_n)_g
\end{pmatrix}.
\]
\begin{definition}
\index{Representation!decomposable}
\index{Representation!indecomposable}
A representation
$\rho\colon G\to\GL(V)$ is \emph{decomposable} if $V$ can be decomposed as $V=S\otimes T$
where $S$ and $T$ are non-zero invariant subspaces of $V$.
\end{definition}
A representation is
\emph{indecomposable} if it is not decomposable.
\begin{exercise}
\label{xca:equivalence}
Let $\rho\colon G\to\GL(V)$ and $\psi\colon G\to\GL(W)$ be equivalent representations.
Prove the following facts:
\begin{enumerate}
\item If $\rho$ is irreducible, then $\psi$ is irreducible.
\item If $\rho$ is decomposable, then $\psi$ is decomposable.
\item If $\rho$ is completely reducible, then $\psi$ is completely reducible.
\end{enumerate}
\end{exercise}
\subsection{Characters}
Fix a finite group $G$ and consider
(matrix) representations of $G$. We use linear algebra to study
these representations.
\begin{definition}
\index{Character}
Let $\rho\colon G\to\GL(V)$ be a representation. The \emph{character} of $\rho$
is the map $\chi_\rho\colon G\to\C$, $g\mapsto\trace\rho_g$.
\end{definition}
If a representation $\rho$ is irreducible, its character is said to be an
\emph{irreducible character}. The \emph{degree} of a character is the degree of the affording
representation.
\begin{example}
We can compute the character of the representation
\[
(12)\mapsto\begin{pmatrix}
-1 & 1\\
0 & 1
\end{pmatrix},
\quad
(23)\mapsto\begin{pmatrix}
1 & 0\\
1 & -1
\end{pmatrix},
\]
of Example \ref{exa:S3_deg2}. Since
\[
\rho_{(132)}=\rho_{(23)(12)}=\rho_{(23)}\rho_{(12)}
=\begin{pmatrix}
-1&1\\
-1&0
\end{pmatrix},
\]
we conclude that $\rho_{(132)}=-1$. Similar calculations show
that
\[
\chi_{\id}=2,
\quad\chi_{(12)}=\chi_{(13)}=\chi_{(23)}=0,
\quad
\chi_{(123)}=\chi_{(132)}=-1.
\]
\end{example}
\begin{proposition}
Let $\rho\colon G\to\GL(V)$ be a representation, $\chi$ be its character and $g\in G$.
The following statements hold:
\begin{enumerate}
\item $\chi(1)=\dim V$.
\item $\chi(g)=\chi(hgh^{-1})$ for all $h\in G$.
\item $\chi(g)$ is the sum of $\chi(1)$ roots of one of order $|g|$.
\item $\chi(g^{-1})=\overline{\chi(g)}$.
\item $|\chi(g)|\leq\chi(1)$.
\end{enumerate}
\end{proposition}
\begin{proof}
The first statement is trivial. To prove 2) note that
\[
\chi(hgh^{-1})=\trace(\rho_{hgh^{-1}})=\trace(\rho_h\rho_g\rho_h^{-1})=\trace\rho_g=\chi(g).
\]
Statement 3) follows from the fact that the trace of $\rho_g$ is the sum
of the eigenvalues of $\rho_g$ and these numbers are roots of the polynomial
$X^{|g|}-1\in\C[X]$. To prove 4) write $\chi(g)=\lambda_1+\cdots+\lambda_k$, where
the $\lambda_j$ are roots of one. Then
\[
\overline{\chi(g)}=\sum^k_{j=1}\overline{\lambda_j}
=\sum_{j=1}^k\lambda_j^{-1}
=\trace(\rho_g^{-1})
=\trace(\rho_{g^{-1}})
=\chi(g^{-1}).
\]
Finally, we prove 5). Use 3) to write $\chi(g)$ as the sum of
$\chi(1)$ roots of one, say $\chi(g)=\lambda_1+\cdots+\lambda_k$ for
$k=\chi(1)$. Then
\[
|\chi(g)|=|\lambda_1+\cdots+\lambda_k|\leq |\lambda_1|+\cdots+|\lambda_k|
=\underbrace{1+\cdots+1}_{\text{$k$-times}}=k.\qedhere
\]
\end{proof}
If two representations are equivalent, their characters are equal.
\begin{definition}
Let $G$ be a group and
$f\colon G\to\C$ be a map. Then $f$ is a \emph{class function} if
$f(g)=f(hgh^{-1})$ for all $g,h\in G$.
\end{definition}
Characters are class functions. If $G$ is a finite group,
we write
\[
\cf(G)=\{f\colon G\to\C:f\text{ is a class function}\}.
\]
One proves that $\cf(G)$ is a complex vector space.
\begin{exercise}
Let $G$ be a finite group. For a conjugacy class $K$ of $G$
let
\[
\delta_K\colon G\to\C,
\quad
\delta_K(g)=\begin{cases}
1 & \text{if $g\in K$,}\\
0 & \text{otherwise}.
\end{cases}
\]
Prove that $\{\delta_K:K\text{ is a conjugacy class of $G$}\}$ is a basis of $\cf(G)$.
In particular, $\dim\cf(G)$ is the number of conjugacy classes of $G$.
\end{exercise}
\begin{proposition}
If $\rho\colon G\to\GL(V)$ and
$\psi\colon G\to\GL(W)$ are representations, then
$\chi_{\rho\oplus\psi}=\chi_\rho+\chi_\psi$.
\end{proposition}
\begin{proof}
For $g\in G$, it follows that
$(\rho\oplus\psi)_g=
\begin{pmatrix}
\rho_g & 0\\
0 & \psi_g
\end{pmatrix}$.
Thus
\[
\chi_{\rho\oplus\psi}(g)=\trace((\rho\oplus\phi)_g)=\trace(\rho_g)+\trace(\psi_g)=\chi_\rho(g)+\chi_\psi(g).\qedhere
\]
\end{proof}
\begin{proposition}
If $\rho\colon G\to\GL(V)$ and
$\psi\colon G\to\GL(W)$ are representations, then
\[
\chi_{\rho\otimes\psi}=\chi_\rho\chi_\psi.
\]
\end{proposition}
\begin{proof}
For each $g\in G$, the map $\rho_g$ is diagonalizable. Let $\{v_1,\dots,v_n\}$
be a basis of eigenvectors of $\rho_g$ and let $\lambda_1,\dots,\lambda_n\in\C$ be such that
$\rho_g(v_i)=\lambda_iv_i$ for all $i\in\{1,\dots,n\}$. Similarly,
let $\{w_1,\dots,w_m\}$ be a basis of
eigenvectors of $\psi_g$ and $\mu_1,\dots,\mu_m\in\C$ be such that $\psi_g(w_j)=\mu_jw_j$ for all $j\in\{1,\dots,m\}$. Each
$v_i\otimes w_j$ is eigenvector of $(\rho\otimes\psi)_g$ with eigenvalue
$\lambda_i\mu_j$, as
\[
(\rho\otimes\psi)_g(v_i\otimes w_j)=\rho_gv_i\otimes \psi_gw_j=\lambda_iv_i\otimes \mu_jv_j=(\lambda_i\mu_j)v_i\otimes w_j.
\]
Thus
$\{v_i\otimes w_j:1\leq i\leq n,1\leq j\leq m\}$ is a basis of eigenvectors and the
$\lambda_i\mu_j$ are the eigenvalues of $(\rho\otimes\psi)_g$. It follows that
\[
\chi_{\rho\otimes\psi}(g)
=\sum_{i,j}\lambda_i\mu_j
=\left(\sum_i\lambda_i\right)\left(\sum_j\mu_j\right)
=\chi_\rho(g)\chi_\psi(g).\qedhere
\]
\end{proof}
We know that
it is also possible to define the dual $\rho^*\colon G\to\GL(V^*)$
of a representation
$\rho\colon G\to\GL(V)$ by the formula
\[
(\rho^*_gf)(v)=f(\rho^{-1}_gv),\quad
g\in G,\,f\in V^*\text{ and }v\in V.
\]
We claim that the character of the dual representation is then
$\overline{\chi_\rho}$. Let $\{v_1,\dots,v_n\}$ be a basis of $V$
and $\lambda_1,\dots,\lambda_n\in\C$ be such that $\rho_gv_i=\lambda_iv_i$ for all $i\in\{1,\dots,n\}$. If $\{f_1,\dots,f_n\}$ is the dual basis of $\{v_1,\dots,v_n\}$, then
\[
(\rho^*_gf_i)(v_j)=f_i(\rho_g^{-1}v_j)
=\overline{\lambda_j}f_i(v_j)
=\overline{\lambda_j}\delta_{ij}
\]
and the claim follows.
Let $G$ be a finite group. If $\chi,\psi\colon G\to\C$ are
characters of $G$ and $\lambda\in\C$, we define
\[
(\chi+\psi)(g)=\chi(g)+\psi(g),
\quad
(\chi\psi)(g)=\chi(g)\psi(g),
\quad
(\lambda\chi)(g)=\lambda\chi(g).
\]
Note that these functions might not be characters!
\begin{theorem}
Let $G$ be a finite group. Then irreducible characters of $G$
are linearly independent.
\end{theorem}
\begin{proof}
Let $S_1,\dots,S_k$ be a complete set of representatives of
classes of
simple $\C[G]$-modules. Let
$\Irr(G)=\{\chi_1,\dots,\chi_k\}$.
By Artin--Wedderburn theorem, there is
an algebra isomorphism
$f\colon \C[G]\to M_{n_1}(\C)\times\cdots\times M_{n_k}(\C)$,
where $\dim S_j=n_j$ for all $j$. Moreover,
\[
M_{n_j}(\C)\simeq \underbrace{S_j\oplus\cdots\oplus S_j}_{n_j-\text{times}}
\]
for all $j$. For each $j$ let $e_j=f^{-1}(I_j)$, where
$I_j$ is the identity matrix of $M_{n_j}(\C)$. We claim that
\[
\chi_i(e_j)=\begin{cases}
\dim S_i & \text{if $i=j$,}\\
0 & \text{otherwise}.
\end{cases}
\]
In fact, $\chi_i(g)$ is the trace of the action of $g$ on $S_j$. Since
$e_ie_j=0$ if $i\ne j$, it follows that
$\chi_i(e_j)=0$ if $i\ne j$. Moreover, $e_j$ acts as the identity on $S_j$, thus
$\chi_j(e_j)=\dim S_j$.
Now if $\sum\lambda_i\chi_i=0$ for some $\lambda_1,\dots,\lambda_k\in\C$, then
\[
(\dim S_j)\lambda_j=\sum\lambda_i\chi_i(e_j)=0
\]
and hence $\lambda_j=0$, as $\dim S_j\ne 0$.
\end{proof}
\begin{theorem}
Let $G$ be a finite group and $S_1,\dots,S_k$ be the simple
$\C[G]$-modules (up to isomorphism). If $V=\oplus_{i=1}^k a_jS_j$, then
$\chi_V=\sum a_i\chi_i$, where
$\chi_i=\chi_{S_i}$ for all $i$. Moreover, if $U$ and $V$
are $\C[G]$-modules,
\[
U\simeq V\Longleftrightarrow \chi_U=\chi_V.
\]
\end{theorem}
\begin{proof}
The first part is left as an exercise.
It is also an exercise to prove that $U\simeq V$ implies $\chi_U=\chi_V$. Let us prove
the converse. Assume that $\chi_U=\chi_V$. Since $\C[G]$ is semisimple,
$U\simeq\oplus_{i=1}^k a_iS_i$ and
$V\simeq\oplus_{i=1}^k b_iS_i$ for some integers
$a_1,\dots,a_k\geq0$ and $b_1,\dots,b_k\geq0$. Since
\[
0=\chi_U-\chi_V=\sum_{i=1}^k (a_i-b_i)\chi_i
\]
and the $\chi_i$ are linearly independent, it follows that
$a_i=b_i$ for all $i$. Hence $U\simeq V$.
\end{proof}
\begin{exercise}
Let $G$ be a finite group and $U$ be a $\C[G]$-module.
Prove $\chi_{U^*}=\overline{\chi_U}$.
\end{exercise}
We will use the following exercise later:
\begin{exercise}
\label{xca:char_Hom}
Prove that if $G$ is a finite group and
$U$ and $V$ are $\C[G]$-modules, then
\[
\chi_{\Hom_G(U,V)}=\overline{\chi_U}\chi_V.
\]
\end{exercise}
For a finite group $G$ we write $\Irr(G)$ to denote
the complete set of isomorphism classes of characters of irreducible representations
of $G$.
\begin{exercise}
Let $G$ be a finite group. Prove that the set
$\Irr(G)$ is a basis
of $\cf(G)$.
\end{exercise}
Let $G$ be a finite group and $U$ be a $\C[G]$-module.
Let
\[
U^G=\{u\in U:g\cdot u=u\text{ for all $g\in G$}\}.
\]
Then $U^G$ is a subspace of $U$. The following lemma
is important:
\begin{lemma}
$\dim U^G=\frac{1}{|G|}\sum_{x\in G}\chi_U(x)$
\end{lemma}
\begin{proof}
Let $\rho$ be the representation associated with $U$ and
let
\[
\alpha=\frac{1}{|G|}\sum_{x\in G}\rho_x\colon U\to U.
\]
We claim that $\alpha^2=\alpha$.
Let $g\in G$. Then
\begin{gather*}
\rho_g(\alpha)=\frac{1}{|G|}\sum_{x\in G}\rho_g\rho_x
=\frac{1}{|G|}\sum_{x\in G}\rho_{gx}=\alpha.
\shortintertext{Thus}
\alpha(\alpha(u))=\frac{1}{|G|}\sum_{x\in G}\rho_x(\alpha(u))=\alpha(u)
\end{gather*}
for all $u\in U$. This means that $\alpha$ has eigenvalues 0 and 1.
Let $V$ be the eigenspace of eigenvalue 1.
We now claim that $V=U^G$. Let us first prove that
$V\subseteq U^G$. For that purpose, let
$v\in V$ and $g\in G$. Then
\begin{align*}
g\cdot v &=\rho_g(v)=\rho_g(\alpha(v))\\
&=\frac{1}{|G|}\sum_{x\in G}\rho_g\rho_x(v)
=\frac{1}{|G|}\sum_{y\in G}\rho_y(v)=\alpha(v)=v.
\end{align*}
Now we prove that $V\supseteq U^G$. Let $u\in U^G$, so
$\rho_g(u)=u$ for all $g\in G$. Then
\[
\alpha(u)=\frac{1}{|G|}\sum_{x\in G}\rho_x(u)
=\frac{1}{|G|}\sum_{x\in G}u=u.
\]
Thus
\[
\dim U^G=\dim V=\trace\alpha
=\frac{1}{|G|}\sum_{x\in G}\trace\rho_x
=\frac{1}{|G|}\sum_{x\in G}\chi_U(x).\qedhere
\]
\end{proof}
One proves that
the operation
\[
\langle\chi_U,\chi_V\rangle=\frac{1}{|G|}\sum_{g\in G}\chi_U(g)\overline{\chi_V(g)}
\]
defines an inner product.
\begin{theorem}
Let $G$ be a finite group and $U$ and $V$ be $\C[G]$-modules.
Then
\[
\langle\chi_U,\chi_V\rangle=\dim\Hom_G(U,V).
\]
\end{theorem}
\begin{proof}
We claim that
\[
\Hom_G(U,V)=\Hom(U,V)^G.
\]
Let us first prove that
$\Hom_G(U,V)\subseteq\Hom(U,V)^G$. Let $f\in \Hom_G(U,V)$ and
$g\in G$. Then
\[
(g\cdot f)(u)=g\cdot f(g^{-1}\cdot u)=g\cdot (g^{-1}\cdot f(u))=f(u)
\]
for all $u\in U$. Now we prove that $\Hom_G(U,V)\supseteq\Hom(U,V)^G$.
Let $f\in\Hom(U,V)^G$. Then $f\colon U\to U$ is a linear such that
$g\cdot f=f$ for all $g\in G$. Then
we compute
\begin{align*}
(g\cdot f)(u)=f(u)&\implies
g\cdot f(g^{-1}\cdot u)=f(u)\\
&\implies f(g^{-1}\cdot u)=g^{-1}\cdot f(u)\quad
\text{for all $g\in G$ and $u\in U$}
\end{align*}
This means that one has
\[
f(g\cdot u)=g\cdot f(u)
\]
for all $g\in G$ and $u\in U$.
Using Exercise \ref{xca:char_Hom},
\begin{align*}
\dim\Hom_G(U,V) &= \dim\Hom(U,V)^G\\
&=\frac{1}{|G|}\sum_{g\in G}\chi_{\Hom(U,V)}(g)\\
&=\frac{1}{|G|}\sum_{g\in G}\overline{\chi_U(g)}\chi_V(g)\\
&=\langle \chi_V,\chi_U\rangle.
\end{align*}
Since $\dim\Hom_G(U,V)\in\R$, one has
$\langle\chi_U,\chi_V\rangle=\overline{\langle\chi_V,\chi_U\rangle}=\langle\chi_V,\chi_U\rangle$ and the claim follows.
\end{proof}
Let $G$ be a finite group and $\Irr(G)=\{\chi_1,\dots,\chi_k\}$.
Note that $k$ is the number of conjugacy classes of $G$. Let
$g_1,\dots,g_k$ be representatives of conjugacy classes of $G$.
The \emph{matrix of characters} of $G$
is $X=(X_{ij})$, where
\[
X_{ij}=\chi_i(g_j)
\]
for $i,j\in\{1,\dots,k\}$.
\begin{example}
\label{exa:S3}
Let $G=\Sym_3$. The group $G$ has three conjugacy classes, so
$|\Irr(G)|=3$. Let $g_1=\id$, $g_2=(12)$ and $g_3=(123)$. We
know that $6=n_1^2+n_2^2+n_3^2$. We know two degree-one
(irreducible) representations of $G$, the trivial one and
the sign. This implies that $n_1=n_2=1$ and
$n_3=2$.
The matrix of characters is then
\begin{center}
\begin{tabular}{|c|ccc|}
\hline
& $1$ & $(12)$ & $(123)$ \tabularnewline
\hline
$\chi_{1}$ & $1$ & $1$ & $1$\tabularnewline
$\chi_{2}$ & $1$ & $-1$ & $1$ \tabularnewline
$\chi_{3}$ & $2$ & ? & ? \tabularnewline
\hline
\end{tabular}
\end{center}
\end{example}