-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path01.tex
597 lines (524 loc) · 18.8 KB
/
01.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
\section{}
\subsection{Artin--Wedderburn theorem}
We first review the basic definitions concerning
finite-dimensional semisimple algebras.
Proofs can be found in the
notes to the course \emph{Associative Algebras}, see
lectures 1, 2 and 3.
Our base field will be the field $\C$ of complex numbers.
\index{Algebra}
\index{Algebra!unitary}
A (complex) \emph{algebra} $A$ is a (complex) vector space
with an associative multiplication $A\times A\to A$ such that
\[
a(\lambda b+\mu c)=\lambda(ab)+\mu(ac),
\quad
(\lambda a+\mu b)c=\lambda(ac)+\mu (bc)
\]
for all $a,b,c\in A$. If $A$ contains
an element $1_A\in A$ such that $1_Aa=a1_A=a$ for all $a\in A$, then $A$ is
a unitary algebra.
Our algebras will be finite-dimensional.
Clearly, $\C$ is an algebra. Other
examples of algebras are $\C[X]$ and $M_n(\C)$.
\index{Module}
\index{Submodule}
A (left) \emph{module} $M$ (over a unitary
algebra $A$) is an abelian group $M$
together with a map $A\times M\to M$, $(a,m)\mapsto am$, such that
$1_Am=m$ for all $m\in M$ and
$a(bm)=(ab)m$ and $a(m+m_1)=am+am_1$ for all $a,b\in A$ and $m,m_1\in M$.
A \emph{submodule} $N$ of $M$ is a subgroup
$N$ such that $an\in N$ for all $a\in A$ and $n\in N$.
\begin{exercise}
Let $A$ be a finite-dimensional algebra. If $M$
is an $A$-module, then $M$ is a vector space with
$\lambda m=(\lambda 1_A)m$ for $\lambda\in\C$ and $m\in M$. Moreover,
$M$ is finitely generated if and only if $M$ is finite-dimensional.
\end{exercise}
\index{Module!simple}
\index{Module!semisimple}
A module $M$ is said to be \emph{simple} if $M\ne\{0\}$ and $\{0\}$ and $M$
are the only submodules of $M$.
A finite-dimensional module $M$
is said to be \emph{semisimple} if $M$ is a direct sum of
finitely many simple submodules.
Clearly, simple modules are semisimple. Moreover, any finite direct sum of semisimples is semisimple.
\index{Algebra!semisimple}
A finite-dimensional algebra $A$ is said to be \emph{semisimple} if
every finitely-generated $A$-module is semisimple.
\begin{theorem}[Artin--Wedderburn]
Let $A$ be a complex finite-dimensional semisimple algebra, say with
$k$ isomorphism classes of simple modules. Then
\[
A\simeq M_{n_1}(\C)\times\cdots\times M_{n_k}(\C)
\]
for some $n_1,\dots,n_k\in\Z_{>0}$.
\end{theorem}
We also give some basic facts on the Jacobson radical
of finite-dimensional algebras. If $A$ is a finite-dimensional algebra, the \emph{Jacobson radical} is defined as
\[
J(A)=\bigcap\{M:M\text{ is a maximal left ideal of $A$}\}.
\]
It turns out that $J(A)$ is an ideal of $A$. If $A$ is
unitary, then Zorn's lemma implies that there a
maximal left ideal of $A$ and hence $J(A)\ne A$.
An ideal $I$ of $A$ is said to be \emph{nilpotent}
if $I^m=\{0\}$ for some $m$, that is
$x_1\cdots x_m=0$ for all $x_1,\dots,x_m\in I$.
One proves that the Jacobson radical of $A$
contains every nilpotent ideal of $A$. An important
fact is that
\begin{align*}
A\text{ is semisimple }
&\Longleftrightarrow
J(A)=\{0\}\\
&\Longleftrightarrow
A\text{ has no non-zero nilpotent ideals}.
\end{align*}
\subsection{Kolchin's theorem}
\label{Kolchin}
In this section it will be useful to consider
non-unitary algebras.
\begin{definition}
\index{Nil!element}
\index{Nilpotent!element}
\index{Nil!algebra}
Let $A$ be an algebra (possibly without one). An element $a\in A$
is said to be \emph{nilpotent} if
$a^n=0$ for some $n\geq1$. The algebra $A$ is said to be
\emph{nil} if every element $a\in A$ is nilpotent.
\end{definition}
Nilpotent elements are also called nil elements.
\begin{example}
Let $A=M_2(\R)$. Then $a=\begin{pmatrix}0&1\\0&0\end{pmatrix}$ is nilpotent.
\end{example}
\begin{definition}
\index{Nilpotent!algebra}
An algebra $A$ is said to be \emph{nilpotent} if there exists
$n\geq1$ such that every product
$a_1a_2\cdots a_n$
of $n$ elements of $A$ is zero.
\end{definition}
Nilpotent algebras are trivially nil, whereas nil algebras may not be nilpotent.
\begin{exercise}
Give an example of a nil algebra that is not nilpotent.
\end{exercise}
Note that nil algebras cannot be unitary.
\begin{proposition}
\label{pro:unit}
Let $A$ be an algebra. There exists an algebra $B$
with one $1_B$ and an ideal $I$ of $B$
such that $B/I\simeq\C$ and $I\simeq A$.
\end{proposition}
\begin{proof}[Sketch of the proof]
Let $B=\C\times A$. The multiplication
\[
(\lambda,u)(\mu,v)=(\lambda\mu,\lambda v+\mu u+uv)
\]
turns $B$ into an algebra with identity $(1,0)$. The subset
$I=\{(0,a):a\in A\}$ is an ideal of $B$. Then $I\simeq A$
and $B/I\simeq\C$.
\end{proof}
\begin{exercise}
Let $A_1,\dots,A_k$ be algebras.
Prove that the ideals of $A_1\times\cdots\times A_k$
are of the form $I_1\times\cdots\times I_k$, where
each $I_j$ is an ideal of $A_j$.
\end{exercise}
\begin{exercise}
\label{xca:unit}
Prove that the non-zero ideals of
$\prod_{i=1}^k M_{n_i}(\C)$ are unitary algebras.
\end{exercise}
\begin{proposition}
Let $A$ be non-zero algebra (possibly without one). If $A$
does not have non-zero nilpotent
ideals, then $A$ is a unitary algebra.
\end{proposition}
\begin{proof}
Let $B$ be a unitary algebra such that there exists
an ideal $I$ of $B$ with $B/I\simeq\C$ and $I\simeq A$
(see Proposition \ref{pro:unit}). Let $J$ be
a nilpotent ideal of $B$. Since $J\cap I\subseteq I$ is a nilpotent
ideal of $A$,
$J\cap I=\{0\}$. Thus
\[
J\simeq J/(J\cap I)\simeq (I+J)/I
\]
is a nilpotent ideal of $B/I\simeq\C$. Thus $J=\{0\}$
and hence $B$ is semisimple. By Artin--Wedderburn,
$B\simeq\prod_{i=1}^k M_{n_i}(\C)$. Since $A$ is isomorphic to an ideal of
$B$, Exercise \ref{xca:unit} shows
that $A$ is a unitary algebra.
\end{proof}
Now we prove another nice result of Wedderburn:
\begin{theorem}[Wedderburn]
\label{thm:Wedderburn}
\index{Wedderburn's theorem}
Let $A$ be a complex finite-dimensional
algebra. If $A$ is generated (as a vector space)
by nilpotent elements, then $A$ is nilpotent.
\end{theorem}
We shall need a lemma.
\begin{lemma}
The vector space $M_n(\C)$ does not have a basis of nilpotent matrices.
\end{lemma}
\begin{proof}
If $\{A_1,\dots,A_{n^2}\}$ is a basis of
$M_n(\C)$ consisting of nilpotent matrices,
then there exist $\lambda_1,\dots,\lambda_{n^2}\in\C$ such that
\begin{equation}
\label{eq:nilpotent}
E_{11}=\begin{pmatrix}
1&0&\cdots&0\\
0&0&\cdots&0\\
\vdots&\vdots&\ddots&\vdots\\
0&0&\cdots&0
\end{pmatrix}
=\sum_{i=1}^{n^2}\lambda_iA_i.
\end{equation}
Note $\trace(A_i)=0$ for all $i\in\{1,\dots,n\}$, as
every $A_i$ is nilpotent.
Apply trace to \eqref{eq:nilpotent} to
obtain that $1=\trace(E_{11})=\sum\lambda_i\trace(A_i)=0$, a contradiction.
\end{proof}
Now we prove Wedderburn's theorem. Note that
the theorem can be extended to any algebraically closed field. We
state and prove Wedderburn's theorem in the case of complex numbers
to simplify the presentation.
\begin{proof}[Proof of Theorem \ref{thm:Wedderburn}]
We proceed by induction on $\dim A$. If $\dim A=1$ and
there exists a nilpotent element $a\in A$ such that
$\{a\}$ is a basis of $A$, then $A$ is nilpotent,
as every element of $A$ is nilpotent, as it is
of the form
$\lambda a$ for some $\lambda\in\C$.
Assume now that $\dim A>1$. Since $J(A)$ is nilpotent, $J(A)^n=\{0\}$
for some $n$.
If $J(A)=A$, the result trivially holds.
If $J(A)\ne\{0\}$,
$\dim A/J(A)<\dim A$ and hence
$A/J(A)$ is nilpotent by
the inductive hypothesis,
say $(A/J(A))^m=\{0\}$. Let $\pi\colon A\to A/J(A)$ be the canonical map and
$N=nm$. We claim that $A^N=\{0\}$. Let $a_1,\dots,a_N\in A$. Write
$a_1\cdots a_N=x_1\cdots x_n$ for some $x_1\cdots x_n\in A$. For example,
\begin{align*}
x_1&=a_1a_2\cdots a_m,\\
x_2&=a_{m+1}a_{m+2}\cdots a_{2m},\\
&\vdots
\end{align*}
Since
\[
\pi(x_1)=\pi(a_1a_2\cdots a_m)=\pi(a_1)\pi(a_2)\cdots\pi(a_m)=0,
\]
it follows that $x_1\in J(A)$. Similarly,
$\pi(x_j)\in J(A)$
for every $j\in\{1,\dots,n\}$. Thus,
\[
a_1a_2\cdots a_N=x_1x_2\cdots x_n\in J(A)^n=\{0\}.
\]
Thus $A$ is nilpotent.
If $J(A)=\{0\}$, then
$A$ is semisimple. By Artin--Wedderburn,
$A\simeq\prod_{i=1}^k M_{n_i}(\C)$, a contradiction to
the previous lemma.
\end{proof}
\begin{definition}
\index{Flag!complete}
Let $V=\C^{n}$ (column vectors). A \emph{complete flag} in $V$
is a sequence $(V_1,V_2,\dots,V_n)$ of vector spaces
such that
\[
\{0\}\subsetneq V_1\subsetneq V_2\subsetneq\cdots\subsetneq V_n=V.
\]
\end{definition}
\index{Flag!standard}
If $(V_1,\dots,V_n)$ is a complete flag, then $\dim V_i=i$ for all
$i\in\{1,\dots,n\}$.
Let $\{e_1,\dots,e_n\}$ be the standard basis of $\C^n$.
The \emph{standard flag} is the sequence $(E_1,\dots,E_n)$, where
$E_i=\langle e_1,\dots,e_i\rangle$ for all $i\in\{1,\dots,n\}$.
Note that $\GL_n(\C)$ acts on the set of complete flags of $V$
by
\[
g\cdot (V_1,\dots,V_n)=(T_g(V_1),\dots,T_g(V_n)),
\]
where $T_g\colon V\to V$, $x\mapsto gx$.
The action is \emph{transitive},
which means that if $(V_1,\dots,V_n)$
is a complete flag, then there exists
$g\in\GL_n(\C)$ such that $g\cdot (E_1,\dots,E_n)=(V_1,\dots,V_n)$.
In fact,
the matrix $g=(v_1|v_2|\cdots|v_n)$, where
$\{v_1,\dots,v_n\}$ is a basis of $V$,
satisfies $ge_i=v_i$ for all $i\in\{1,\dots,n\}$.
\label{Borel subgroup}
Let $B_n(\C)$ be the stabilizer
\begin{align*}
G_{(E_1,\dots,E_n)}
&=\{g\in\GL_n(\C):T_g(E_i)=E_i\text{ for all $i$}\}
=\{(b_{ij}):b_{ij}=0\text{ if $i>j$}\}
\end{align*}
of the standard flag. Then $B_n(\C)$ is
known as the \emph{Borel subgroup}.
Let $U_n(\C)$ be the subgroup of $\GL_n(\C)$
of matrices $(u_{ij})$ such that
\[
u_{ij}=\begin{cases}
1&\text{if $i=j$},\\
0&\text{if $i>j$}.\end{cases}
\]
Let $T_n(\C)$ be the subgroup of $\GL_n(\C)$ diagonal matrices.
\begin{proposition}
$B_n(\C)=U_n(\C)\rtimes T_n(\C)$.
\end{proposition}
\begin{proof}
It is trivial that $U_n(\C)\cap T_n(\C)=\{I\}$, where $I$ is the
$n\times n$ identity matrix. Clearly, $U_n(\C)$ is a subgroup of $B_n(\C)$.
To prove that
$U_n(\C)$ is normal in $B_n(\C)$ note that $U_n(\C)$ is the kernel
of the group homomorphism
\[
f\colon B_n(\C)\to T_n(\C),\quad
(b_{ij})\mapsto\begin{pmatrix}
b_{11}\\
&b_{22}\\
&&\ddots\\
&&&b_{nn}
\end{pmatrix}.
\]
It remains to show that $B_n(\C)=U_n(\C)T_n(\C)$.
Let us prove that $B_n(\C)\subseteq U_n(\C)T_n(\C)$, as the other inclusion is trivial.
Let $b\in B_n(\C)$. Then
$bf(b)^{-1}\in \ker f=U_n(\C)$ and therefore
$b=(bf(b)^{-1})f(b)\in U_n(\C)T_n(\C)$.
\end{proof}
\begin{definition}
\index{Unipotent element}
A matrix $a\in\GL_n(\C)$ is said to be \emph{unipotent}
if its characteristic polynomial is of the form
$(X-1)^n$.
\end{definition}
The matrix $\begin{pmatrix}1&1\\0&1\end{pmatrix}$ is unipotent,
as its characteristic polynomial is $(X-1)^2$.
\begin{definition}
\index{Unipotent group}
A subgroup $G$ of $\GL_n(\C)$ is said to be \emph{unipotent} if
each $g\in G$ is unipotent.
\end{definition}
Now an application of Wedderburn's theorem:
\begin{proposition}
\label{pro:unipotent}
Let $G$ be a unipotent subgroup of $\GL_n(\C)$.
Then there exists a non-zero
$v\in\C^{n}$ such that $gv=v$ for all $g\in G$.
\end{proposition}
\begin{proof}
Without loss of generality, we may assume that $G$ is non-trivial.
Let $V$ be the subspace of $\C^{n\times n}$
generated by $\{g-I:g\in G\}$. If $g\in G$, then
$(g-I)^n=0$, as $g$ is unipotent. Thus,
every element of $V$ is nilpotent. If $g,h\in G$,
then
\[
(g-I)(h-I)=(gh-I)-(g-I)-(h-I)\in V.
\]
This means that $V$ is closed under multiplication and
hence $V$ is an algebra generated (as a vector space)
by nilpotent elements. By Wedderburn's theorem,
$V$ is nilpotent. Let $m$ be minimal
such that
$(g_1-I)\cdots (g_m-I)=0$
for all $g_1,\dots,g_m\in G$. The minimality of $m$ implies that
there exist $h_1,\dots,h_{m-1}\in G$ such that
\[
(h_1-I)\cdots (h_{m-1}-I)\ne 0.
\]
In particular, there exists a non-zero
$w\in C^{n}$ such that
$v=(h_1-I)\cdots (h_{m-1}-I)w\ne 0$. For every
$g\in G$,
\[
(g-I)v=(g-I)(h_1-I)\cdots (h_{m-1}-I)w=0
\]
and hence $gv=v$.
\end{proof}
\begin{theorem}[Kolchin]
\label{thm:Kolchin}
\index{Kolchin's theorem}
Every unipotent subgroup of $\GL_n(\C)$ is conjugate
to some subgroup of $U_n(\C)$.
\end{theorem}
\begin{proof}
Let $G$ be an unipotent subgroup of $\GL_n(\C)$.
Assume first that there exists
a complete flag $(V_1,\dots,V_n)$ of $\C^n$
such that $G\subseteq G_{(V_1,\dots,V_n)}$. Let $g\in\GL_n(\C)$ be such that
$g\cdot (E_1,\dots,E_n)=(V_1,\dots,V_n)$. Then
\begin{gather*}
G\subseteq G_{g\cdot (E_1,\dots,E_n)}
=g G_{(E_1,\dots,E_n)}g^{-1}=gB_n(\C)g^{-1}.
\end{gather*}
Since every unipotent element of $B_n(\C)$
belongs to $U_n(\C)$, it follows that
\[
G\subseteq gU_n(\C)g^{-1}.
\]
We claim that $G\subseteq G_{(V_1,\dots,V_n)}$ for
some complete flag $(V_1,\dots,V_n)$. We proceed by induction on $n$. If $n=1$, the result is trivial. Assume the result holds for
$n-1$. By the previous proposition, there exists a non-zero $v\in\C^n$
such that $gv=v$ for all $g\in G$. Let $Q=\C^n/\langle v\rangle$ and $\pi\colon \C^n\to Q$ be the canonical map. Then $\dim Q=n-1$. The group $G$
acts on $Q$ by
\[
g\cdot (w+\langle v\rangle)=gw+\langle v\rangle.
\]
The action is well-defined: if $w+\langle v\rangle=w_1+\langle v\rangle$, then
$w-w_1=\lambda v$ for some $\lambda\in\C$. This implies
that
\[
gw-gw_1=g(w-w_1)=\lambda(gv)=\lambda v\in \langle v\rangle
\]
and hence $gw+\langle v\rangle=gw_1+\langle v\rangle$.
By the inductive hypothesis, $G$ stabilizes
a complete flag $(Q_1,\dots,Q_{n-1})$, where
\[
Q_1=\langle\pi(v_1)\rangle,
\quad
Q_2=\langle\pi(v_1),\pi(v_2)\rangle,
\quad
\dots
\quad
Q_{n-1}=\langle\pi(v_1),\dots,\pi(v_{n-1})\rangle.
\]
Let
\[
W_0=\langle v\rangle,
\quad
W_1=\langle v,v_1\rangle,
\quad
W_2=\langle v,v_1,v_2\rangle,
\quad\dots\quad
W_{n-1}=\langle v,v_1,\dots,v_{n-1}\rangle.
\]
Since $(Q_1,\dots,Q_{n-1})$ is a complete flag,
the set $\{\pi(v_j):1\leq j\leq n-1\}$ is linearly
independent. We claim that
$\{v,v_1,\dots,v_{n-1}\}$ is linearly independent. In fact, since $v\ne 0$, one obtains that
\[
\sum_{i=1}^{n-1}\lambda_iv_i+\lambda v=0
\implies
\sum_{i=1}^{n-1}\lambda_i\pi(v_i)=0
\implies
\lambda_1=\cdots=\lambda_{n-1}=0
\implies
\lambda=0.
\]
Thus $\dim W_i=i+1$ for all $i$.
Let $g\in G$.
Clearly,
$gW_0\subseteq W_0$, as $gv=v$. Let $j\in\{1,\dots,n-1\}$.
There exist $\lambda_1,\dots,\lambda_j\in\C$
such that
$\pi(gv_j)=\sum_{i\leq j}\lambda_i\pi(v_i)$. This means
that
\[
gv_j-\sum_{i\leq j}\lambda_iv_i=\lambda v\in\langle v\rangle
\]
for some $\lambda\in\C$. In particular,
\[
gv_j=\sum_{i\leq j}\lambda_iv_i+\lambda v\in\langle v,v_1,\dots,v_{j}\rangle=W_j.
\]
Therefore, $G\subseteq G_{(W_0,\dots,W_{n-1})}$.
\end{proof}
\subsection{Some comments}
The ideas behind the theorem are somewhat connected to Sylow's theory. The key is to consider an explicit version of Sylow's theorem for the group $\GL_n(p)$ of invertible matrices
with coefficients in the field $\F_p$ with $p$ elements.
A group $G$ acts linearly on a vector space $V$
if $g\cdot (v+w)=g\cdot v+g\cdot w$
for all $g\in G$ and $v,w\in V$.
Proposition \ref{pro:unipotent} has the following
version:
\begin{proposition}
Let $P$ be a finite $p$-group acting on a finite-dimensional $\F_p$-vector space
$V$ linearly. Then there exists a non-zero $v\in V$
such that $x\cdot v=v$ for all $x\in P$.
\end{proposition}
\begin{proof}
Let $n=\dim V$. There are $p^n-1$ non-zero vectors
in $V$. Since the action is linear,
$P$ acts
on $X=V\setminus\{0\}$. We decompose $V$ into orbits
and collect those orbits with only one element, say
\[
X=X_0\cup O(v_1)\cup \cdots\cup O(v_m),
\]
where $|O(v_j)|\geq 2$ for all $j\in\{1,\dots,m\}$.
Since
$p$ divides the order of each $O(v_j)$ and
$|X|=p^n-1$ is not divisible by $p$,
it follows that $X_0\ne\emptyset$. In particular,
there exists $v\in V$ such that $x\cdot v=v$ for
all $x\in G$.
\end{proof}
The analog of Kolchin's theorem is the following result:
\begin{proposition}
\label{pro:Kolchin}
Every $p$-subgroup of $\GL_n(p)$ is conjugate to a subgroup
of the unipotent subgroup $U_n(p)$.
\end{proposition}
\begin{proof}[Sketch of the proof]
Let $P$ be a $p$-subgroup of $\GL_n(p)$.
Then $P$ acts linearly on an $n$-dimensional
$\F_p$-vector space $V$ by left multiplication.
The previous
proposition implies that there exists a non-zero
$v_1\in V$
such that $xv_1=v_1$ for all $x\in P$. Let
$V_1=\langle v_1\rangle$. The group $P$
acts on the $(n-1)$-dimensional vector space
$V/V_1$ by
\[
x\cdot (v+V_1)=xv+V_1.
\]
This action is well-defined.
As before, there exists a non-zero
vector of $V/V_1$ fixed by $P$. Thus
there exists $v_2\in V\setminus V_1$ such that
$xv_2+V_1=v_2+V_1$. Note that $\{v_1,v_2\}$ is linearly
independent, as applying the canonical
map $V\to V/V_1$ to
$\alpha v_1+\beta v_2=0$ one obtains
that $\beta=0$ and therefore $\alpha=0$. This process
produces a basis $\{v_1,\dots,v_n\}$
of $V$ and a sequence $\{0\}\subsetneq V_1\subsetneq V_2\subsetneq\cdots\subsetneq V_n=V$, where
$V_j=\langle v_1,\dots,v_j\rangle$ for all $j\in\{1,\dots,n\}$. Moreover,
$PV_j\subseteq V_j$ and
$Pv_j=v_j+V_{j-1}$ for all $j$. This
means precisely that in the basis
$\{v_1,\dots,v_n\}$
every element of $P$ is an upper triangular
matrix with ones in the main diagonal.
\end{proof}
\index{Sylow's theorems}
Proposition \ref{pro:Kolchin} is deeply
connected to Sylow's theorems.
\begin{exercise}
Prove that the normalizer of $U_n(p)$ in $\GL_n(p)$ is the
Borel subgroup $B_n(p)$ of upper triangular matrices.
\end{exercise}
Now we have the following explicit Sylow theory for
$\GL_n(p)$. The first two Sylow theorems
appear in the following result.
\begin{exercise}
Prove that $U_n(p)$ is a Sylow $p$-subgroup of $\GL_n(p)$.
\end{exercise}
What about the third Sylow's theorem?
First, note that the number $n_p$
of conjugates of $U_n(p)$ in $\GL_n(p)$
is the number of complete flags
in $\F_p^n$.
\begin{exercise}
Prove that $n_p\equiv1\bmod p$.
\end{exercise}