-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathT_prime.tex
238 lines (213 loc) · 9.38 KB
/
T_prime.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
\section{Project: When a group algebra is prime?}
\label{section:Connel}
% Connel's theorem gives a full answer to the natural
% question in the case where $K$ is of characteristic zero.
%\begin{lemma}
% \label{lemma:Dfg}
% Sea $H$ un subgrupo finitamente generado de $\Delta(G)$.
% \begin{enumerate}
% \item $(G:C_G(H))$ es finito.
% \item $(H:Z(H))$ es finito.
% \item $[H,H]$ es finito.
% \item Si $H_0$ es el conjunto de elementos de torsión de $H$, $H_0$ es
% un subgrupo normal finito de $H$ y $H/H_0$ es finitamente generado,
% abeliano y libre de torsión.
% \end{enumerate}
%\end{lemma}
%
%\begin{proof}
% Veamos la primera afirmación: Si $H=\langle
% h_1,\dots,h_n\rangle\subseteq\Delta(G)$, entonces $(G:C_G(h_i))$ es finito
% para todo $i\in\{1,\dots,n\}$. Como $C_G(H)=\cap_{i=1}^nC_G(h_i)$, se
% concluye que $(G:C_G(H))$ es finito.
%
% Para demostrar la segunda afirmación basta observar que $Z(H)=H\cap C_G(H)$
% y luego $(H:Z(H))\leq(G:C_G(H)<\infty$. % necesito dos lemas
%
% La tercera afirmación es consecuencia de la segunda gracias a un teorema de
% Schur.
%
% Por último, demostremos la cuarta afirmación. El grupo $H/[H,H]$ es
% abeliano y finitamente generado y luego, sus elementos de torsión forman un
% grupo finito. Como $[H,H]$ es finito, $[H,H]$ es un subgrupo normal de
% $H_0$. Vamos a demostrar que la torsión de $H/[H,H]$ es igual a
% $H_0/[H,H]$. La inclusión $\supseteq$ es trivial. Veamos entonces que vale
% $\subseteq$: so $(x[H,H])^k=1$, entonces $x^k\in[H,H]$. Luego $(x^k)^m=1$ y
% luego $x\in H_0$. Tenemos entonces que
% \[
% H/[H,H]\simeq\Z^r\times\operatorname{tor}(H/[H,H])\simeq\Z^r\times H_0/[H,H]
% \]
% y luego $H/H_0$ es finitamente generado, abeliano y libre de torsión.
%
%\end{proof}
%
%\begin{lemma}
% \label{lemma:K[abelian]}
% Si $G$ un grupo abeliano finitamente generado y sin torsión, entonces
% $K[G]$ es un dominio.
%\end{lemma}
%
%\begin{proof}
% Por el teorema
% de estructura de grupos abelianos finitamente generados podemos escribir
% $G=\langle x_1\rangle\times\cdots\langle x_n\rangle$, donde
% $\langle x_j\rangle\simeq\Z$ para todo $j\in\{1,\dots,n\}$. Todo elemento
% de $G$ se escribe unívocamente como $x_1^{m_1}\cdots x_n^{m_n}$ y
% luego la función
% \[
% \iota\colon K[X_1,\dots,X_n]\to K[G],\quad
% X_j\mapsto x_j,
% \]
% es un
% morfismo de anillos inyectivo. Si $\alpha\in K[G]$, entonces existe
% $m\in\N$ suficientemente grande tal que $\iota((X_1\cdots X_n)^m)\alpha\in
% \iota(K[X_1,\dots,X_n])\simeq K[X_1,\dots,X_n]$. Luego $K[G]\subseteq
% K(X_1,\dots,X_n)$ y $K[G]$ es un dominio.
%\end{proof}
%\begin{lemma}
% Si $G$ es un grupo, entonces
% $\Delta(G)/\Delta^+(G)$ es abeliano y libre de torsión.
%% Valen las siguientes afirmaciones:
%% \begin{enumerate}
%% %\item $\Delta^+(G)$ está generado por los subgrupos normales finitos de $G$.
%% \item
%% \item Si $\Delta^+(G)=1$, entonces $K[\Delta(G)]$ es un dominio.
%% \end{enumerate}
%\end{lemma}
%
%\begin{proof}
%% Demostremos la primera afirmación.
% Sean $y_1,\dots,y_n\in\Delta(G)$ y sea $L=\langle y_1,\dots,y_n\rangle$.
% Como $[L,L]$ es finito por el lema~\ref{lemma:Dfg}, $[L,L]\subseteq\Delta^+(G)$. Luego
% $\Delta(G)/\Delta^+(G)$ es abeliano y libre de torsión.
%%
%% Para demostrar la segunda afirmación basta observar que si $\Delta^+(G)=1$
%% entonces, por el primer ítem, $\Delta(G)$ es abeliano, finitamente generado
%% y libre de torsión. Luego $K[\Delta(G)]$ es un dominio por el
%% lema~\ref{lemma:K[abelian]}.
%\end{proof}
If $S$ is a finite subset of a group $G$, then we define
$\widehat{S}=\sum_{x\in S}x$.
\begin{lemma}
\label{lemma:sumN}
Let $N$ be a finite normal subgroup of $G$. Then $\widehat{N}=\sum_{x\in N}x$ is central
in $K[G]$ and $\widehat{N}(\widehat{N}-|N|1)=0$.
\end{lemma}
\begin{proof}
Assume that $N=\{n_1,\dots,n_k\}$. Let
$g\in G$. Since $N\to N$, $n\mapsto gng^{-1}$, is bijective,
\[
g\widehat{N}g^{-1}=g(n_1+\cdots+n_k)g^{-1}=gn_1g^{-1}+\cdots+gn_kg^{-1}=\widehat{N}.
\]
Since $nN=N$ if $n\in N$, it follows that $n\widehat{N}=\widehat{N}$. Thus
$\widehat{N}\widehat{N}=\sum_{j=1}^k n_j\widehat{N}=|N|\widehat{N}$.
\end{proof}
If $G$ is a group, let
\begin{align*}
&\Delta^+(G)=\{x\in \Delta(G):\text{$x$ has finite order}\}.
\end{align*}
\begin{exercise}[Dietzmann's theorem]
\index{Dietzmann's theorem}
\label{xca:Dietzmann}
Let $G$ be a group and $X\subseteq G$ be a finite subset of $G$ closed by
conjugation. If there exists $n$ such that $x^n=1$ for all $x\in X$, then
$\langle X\rangle$ is a finite subgroup of $G$.
\end{exercise}
\begin{proposition}
\label{lem:DcharG}
If $G$ is a group, then $\Delta^+(G)$ is a characteristic subgroup of $G$.
\end{proposition}
\begin{proof}
Clearly, $1\in\Delta^+(G)$.
Let $x,y\in\Delta^+(G)$ and $H$ be the subgroup of $G$ generated by the set
$C$ formed by all finite conjugates of $x$ and $y$. If $|x|=n$ and
$|y|=m$, then $c^{nm}=1$ for all $c\in C$.
Since $C$ is finite and closed under conjugation, Dietzmann's theorem (Exercise \ref{xca:Dietzmann})
implies that $H$ is finite and hence
$H\subseteq\Delta^+(G)$. In particular, $xy^{-1}\in\Delta^+(G)$. It is now clear
that $\Delta^+(G)$ is a characteristic subgroup, as for
every $f\in\Aut(G)$ and $x\in\Delta^+(G)$ it follows that $f(x)\in\Delta^+(G)$.
\end{proof}
To prove Connel's theorem we need a lemma.
\begin{lemma}
\label{lem:Connel}
Let $G$ be a group and $x\in\Delta^+(G)$. There exists a finite normal subgroup
$H$ of $G$ such that $x\in H$.
\end{lemma}
\begin{proof}
Let $H$ be the subgroup generated by the conjugates of $x$. Since $x$ has finitely many conjugates,
$H$ is finitely generated. Moreover, $H$ is normal in $G$ and it is generated by torsion elements.
All these generators of $H$ have the same order, say $n$. By Dietzmann's theorem (Exercise \ref{xca:Dietzmann}),
$H$ is finite.
\end{proof}
\index{Ring!prime}
Recall that a ring $R$ is said to be \emph{prime}
if for $x,y\in R$ such that $xRy=\{0\}$ it follows that $x=0$ or $y=0$. Prime rings
are non-commutative analogs of domains.
\begin{theorem}[Connell]
\label{thm:Connel}
\index{Connel's theorem}
Let $K$ be a field of characteristic zero. Let
$G$ be a group. The following statements are equivalent:
\begin{enumerate}
\item $K[G]$ is prime.
\item $Z(K[G])$ is prime.
\item $G$ does not contain non-trivial finite normal subgroups.
\item $\Delta^+(G)=\{1\}$.
\end{enumerate}
\end{theorem}
\begin{proof}
We first prove that $1)\implies2)$. Since $Z(K[G])$ is commutative, we need to prove that
there are no non-trivial zero divisors. Let $\alpha,\beta\in Z(K[G])$ be such that
$\alpha\beta=0$. Let $A=\alpha K[G]$ and $B=\beta K[G]$. Since both $\alpha$ and
$\beta$ are central, both $A$ and $B$ are ideals of $K[G]$. Since $AB=\{0\}$,
it follows that either $A=\{0\}$ or $B=\{0\}$, as $K[G]$ is prime by assumption.
Thus either $\alpha=0$ or
$\beta=0$.
We now prove that $2)\implies3)$. Let $N$ be a normal finite subgroup of $G$.
By Lemma~\ref{lemma:sumN}, $\widehat{N}=\sum_{x\in N}x$ is central in
$K[G]$ and $\widehat{N}(\widehat{N}-|N|1)=0$. Since $\widehat{N}\ne 0$ (recall that
$K$ has characteristic zero) and $Z(K[G])$ is a domain,
$\widehat{N}=|N|1$, that is $N=\{1\}$.
Let us prove that $3)\implies4)$. Let $x\in\Delta^+(G)$. By Lemma~\ref{lem:Connel},
there exists a finite normal subgroup $H$ of $G$ that contains $x$. By assumption, $H$ is trivial.
Hence $x=1$.
Finally, let us prove that $4)\implies1)$. Let $A$ and $B$ be ideals of
$K[G]$ such that $AB=\{0\}$. Assume that $B\ne\{ 0\}$ and let $\beta\in
B\setminus\{0\}$. If $\alpha\in A$, then, since
\[
\alpha K[G]\beta\subseteq \alpha B\subseteq AB=\{0\},
\]
Passman's lemma (see Lemma~\ref{lem:Passman})
implies that $\pi_{\Delta(G)}(\alpha)\pi_{\Delta(G)}(\beta)=\{0\}$.
By assumption, $\Delta^+(G)$ is trivial.
Thus $\Delta(G)$ is torsion-free.
As $\Delta(\Delta(G))=\Delta(G)$, it follows from
Proposition~\ref{pro:FCabeliano} that
$\Delta(G)$ is abelian. Therefore
$K[\Delta(G)]$ has no zero divisors and therefore $\alpha=0$.
\end{proof}
\index{Hopkins--Levitzky's theorem}
We now need to recall Hopkins--Levitzky's theorem. The theorem
states that unitary left artinian rings are left noetherian.
\begin{theorem}[Connel]
\index{Connel's theorem}
Let $K$ be a field of characteristic zero. If $G$ is a group, then
$K[G]$ is left artinian if and only if $G$ is finite.
\end{theorem}
\begin{proof}
If $G$ is finite, $K[G]$ is left artinian, as it is a finite-dimensional algebra.
Let us assume that $K[G]$ is left artinian.
If $K[G]$ is prime, Wedderburn's theorem implies that
$K[G]$ is simple and hence
$G$ is trivial (otherwise, $K[G]$ is not simple as the augmentation ideal
is a non-zero ideal of $K[G]$).
Since $K[G]$ is left artinian, it is left noetherian by the Hopkins--Levitzky theorem. Thus $K[G]$
admits a composition series. We proceed by induction on the length of this composition series of
$K[G]$. If the length is one, $\{0\}$ is the only ideal of $K[G]$ and hence the result follows as
$K[G]$ is prime. If we assume the result holds for length $n$ and $K[G]$ is not prime, then,
Connel's theorem implies that $G$ contains a finite non-trivial normal subgroup $H$. The canonical map
$K[G]\to K[G/H]$ implies that $K[G/H]$ is left artinian and has length
$<n$. By using the inductive hypothesis, $G/H$
is a finite group. Since $H$ is also finite, it follows that $G$ is finite.
\end{proof}