-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path11.tex
712 lines (629 loc) · 23.1 KB
/
11.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
\section{Lecture: 12/12/2024}
\label{11}
\subsection{Formanek's theorem, I}
We start with some exercises.
\begin{exercise}
\label{xca:invertible_algebraic}
Let $K$ be a field. Let $A$ be a $K$-algebra algebraic over $K$ and $a\in A$.
\begin{enumerate}
\item $a$ is a left zero divisor if and only if $a$ is a right zero divisor.
\item $a$ is left invertible if and only if $a$ is right invertible.
\item $a$ is invertible if and only if $a$ is not a zero divisor.
\end{enumerate}
\end{exercise}
\begin{exercise}
\label{exa:norma}
For $\alpha=\sum_{g\in G}\alpha_gg\in\C[G]$ let $|\alpha|=\sum_{g\in
G}|\alpha_g|\in\R$. Prove the following statements:
\begin{enumerate}
%\item $|\trace(\alpha)|\leq |\alpha|$,
\item $|\alpha+\beta|\leq|\alpha|+|\beta|$, and
\item $|\alpha\beta|\leq|\alpha||\beta|$
\end{enumerate}
for all $\alpha,\beta\in\C[G]$.
\end{exercise}
\begin{theorem}[Formanek]
\label{thm:FormanekQ}
\index{Formanek's theorem}
Let $G$ be a group. If every element of $\Q[G]$ is invertible or
a zero divisor, then $G$ is locally finite.
\end{theorem}
\begin{proof}
Let $\{x_1,\dots,x_n\}$ be a finite subset of $G$. Adding inverses if needed, we may assume that
$\{x_1,\dots,x_n\}$ generates the subgroup
$H=\langle x_1,\dots,x_n\rangle$ as a semigroup. Let
\[
\alpha=\frac{1}{2n}(x_1+\cdots+x_n)\in\Q[G]
\]
Note that $|\alpha|\leq 1/2$.
We claim that $1-\alpha\in\Q[G]$ is invertible. If not, then it is a zero divisor. If there exists
$\delta\in\Q[G]$ such that $\delta(1-\alpha)=0$, then
$\delta=\delta\alpha$. Since
\[
|\delta|=|\delta\alpha|\leq|\delta||\alpha|\leq|\delta|/2,
\]
it follows that $\delta=0$. Similarly, $(1-\alpha)\delta=0$ implies
$\delta=0$.
Let $\beta=(1-\alpha)^{-1}\in\Q[G]$. For each $k$ let
\[
\gamma_k=(1+\alpha+\cdots+\alpha^k)-\beta.
\]
Then
\begin{align*}
\gamma_k(1-\alpha)&=(1+\alpha+\cdots+\alpha^k-\beta)(1-\alpha)\\
&=(1+\alpha+\cdots+\alpha^k)(1-\alpha)-\beta(1-\alpha)=-\alpha^{k+1}
\end{align*}
and thus
$\gamma_k=-\alpha^{k+1}\beta$. Since
\[
|\gamma_k|=|-\alpha^{k+1}\beta|\leq|\beta||\alpha^{k+1}|\leq\frac{|\beta|}{2^{k+1}},
\]
it follows that $\lim_{k\to\infty}|\gamma_k|=0$.
We now prove that $H\subseteq\supp\beta$. This will finish the proof of the theorem,
as $\supp\beta$ is a finite subset of $G$ by definition. If
$H\not\subseteq\supp\beta$, let $h\in H\setminus\supp\beta$. Assume that
$h=x_{i_1}\cdots x_{i_m}$ is a word in the letters $x_j$ of length $m$. Let
$c_j$ be the coefficient of $h$ in $\alpha^j$. Then $c_0+\cdots+c_k$ is the
coefficient of $h$ in $\gamma_k$, but
\[
|\gamma_k|\geq c_0+c_1+\cdots+c_k\geq c_m>0
\]
for all $k\geq m$, as each $c_j$ is non-negative, a contradiction to
$|\gamma_k|\to 0$ si $k\to\infty$.
\end{proof}
\subsection{Tensor products}
The \emph{tensor product} of the vector spaces (over $K$) $U$ and $V$
is the quotient vector space $K[U\times V]/T$, where $K[U\times V]$
is the vector space with basis
\[
\{(u,v):u\in U,v\in V\}
\]
and $T$ is the subspace
generated by elements of the form
\[
(\lambda u+\mu u',v)-\lambda(u,v)-\mu(u',v),\quad
(u,\lambda v+\mu v')-\lambda(u,v)-\mu(u,v')
\]
for $\lambda,\mu\in K$, $u,u'\in U$ and $v,v'\in V$.
The tensor product of $U$ and $V$ will be denoted by $U\otimes_KV$ or
$U\otimes V$ when the base field is clear from the context. For $u\in U$ and
$v\in V$ we write $u\otimes v$ to denote the coset $(u,v)+T$.
\begin{theorem}
Let $U$ and $V$ be vector spaces. Then there exists a bilinear map
\[
U\times V\to U\otimes V,\quad (u,v)\mapsto u\otimes v,
\]
such that
each element of $U\otimes V$ is a finite sum of the form
\[
\sum_{i=1}^N u_i\otimes v_i
\]
for some $u_1,\dots,u_N\in U$ and $v_1,\dots,v_N\in V$.
Moreover, if $W$ is a vector space and
\[
\beta\colon U\times V\to W
\]
is a bilinear map,
there exists a linear map
$\overline{\beta}\colon U\otimes V\to W$ such that $\overline{\beta}(u\otimes
v)=\beta(u,v)$ for all $u\in U$ and $v\in V$.
\end{theorem}
\begin{proof}
By definition, the map
\[
U\times V\to U\otimes V,\quad
(u,v)\mapsto u\otimes v,
\]
is bilinear. From the definitions, it follows that
$U\otimes V$ is a finite linear combination of elements of the form
$u\otimes v$, where $u\in U$ and $v\in V$. Since $\lambda(u\otimes
v)=(\lambda u)\otimes v$ for all $\lambda\in K$, the first claim follows.
Since the elements of $U\times V$ form a basis of $K[U\times V]$, there exists
a linear map
\[
\gamma\colon K[U\times V]\to W,\quad
\gamma(u,v)=\beta(u,v).
\]
Since $\beta$ is bilinear by assumption, $T\subseteq\ker\gamma$. It follows that there exists
a linear map $\overline{\beta}\colon U\otimes V\to
W$ such that
\[
\begin{tikzcd}
K[U\times V] \arrow[r]\arrow[d] & W \\
U\otimes V\arrow[ur, dashrightarrow]
\end{tikzcd}
\]
commutes. In particular, $\overline{\beta}(u\otimes v)=\beta(u,v)$.
\end{proof}
\begin{exercise}
\label{xca:tensorial_unicidad}
Prove that the properties of the previous theorem characterize tensor products up to isomorphism.
\end{exercise}
Some properties:
%Observemos
%que todo elemento de $U\otimes V$ es una suma finita
%de la forma
%\[
% \sum_{i=1}^N u_i\otimes v_i
%\]
%para $N\in\N$, $u_i\in U$ y $v_i\in V$. Esta expresión no es única. Vale además
%que $u\otimes 0=0=0\otimes v$ para todo $u\in U$ y $v\in V$.
\begin{proposition}
Let $\varphi\colon U\to U_1$ and $\psi\colon V\to V_1$ be linear maps. There
exists a unique linear map
$\varphi\otimes\psi\colon U\otimes V\to U_1\otimes V_1$ such that
\[
(\varphi\otimes\psi)(u\otimes v)=\varphi(u)\otimes\psi(v)
\]
for all $u\in U$ and $v\in V$.
\end{proposition}
\begin{proof}
Since $U\times V\to U_1\otimes V_1$,
$(u,v)\mapsto\varphi(u)\otimes\psi(v)$, is bilinear, there exists a linear map
$U\otimes V\to U_1\otimes V_1$, $u\otimes
v\to\varphi(u)\otimes\psi(v)$. Thus
\[
\sum u_i\otimes v_i\mapsto\sum\varphi(u_i)\otimes\psi(v_i)
\]
is well-defined.
\end{proof}
\begin{exercise}
Prove the following statements:
\begin{enumerate}
\item $(\varphi\otimes\psi)(\varphi'\otimes\psi')=(\varphi\varphi')\otimes(\psi\psi')$.
\item If $\varphi$ and $\psi$ are isomorphisms, then
$\varphi\otimes\psi$ is an isomorphism.
\item $(\lambda\varphi+\lambda'\varphi')\otimes\psi=\lambda\varphi\otimes\psi+\lambda'\varphi'\otimes\psi$.
\item $\varphi\otimes(\lambda\psi+\lambda'\psi')=\lambda\varphi\otimes\psi+\lambda'\varphi\otimes\psi'$.
\item If $U\simeq U_1$ and $V\simeq V_1$, then $U\otimes V\simeq U_1\otimes V_1$.
\end{enumerate}
\end{exercise}
The following proposition is extremely useful:
\begin{proposition}
If $U$ and $V$ are vector spaces, then
$U\otimes V\simeq V\otimes U$.
\end{proposition}
\begin{proof}
Since $U\times V\to V\otimes U$, $(u,v)\mapsto v\otimes u$, is bilinear, there exists
a linear map
\[
U\otimes V\to V\otimes U,\quad u\otimes
v\mapsto v\otimes u.
\]
Similarly, there exists a linear map
\[
V\otimes U\to U\otimes V,\quad v\otimes u\mapsto
u\otimes v.
\]
Thus $U\otimes V\simeq V\otimes U$.
\end{proof}
\begin{exercise}
\label{xca:UxVxW}
Prove that $(U\otimes V)\otimes W\simeq U\otimes(V\otimes W)$.
\end{exercise}
\begin{exercise}
\label{xca:UxK}
Prove that $U\otimes K\simeq U\simeq K\otimes U$.
\end{exercise}
\begin{proposition}
\label{pro:U_LI}
Let $U$ and $V$ be vector spaces.
If $\{u_1,\dots,u_n\}$ is a linearly independent subset of $U$ and
$v_1,\dots,v_n\in V$ is such that $\sum_{i=1}^n u_i\otimes v_i=0$, then
$v_i=0$ for all $i\in\{1,\dots,n\}$.
\end{proposition}
\begin{proof}
Let $i\in\{1,\dots,n\}$ and
\[
f_i\colon U\to K,
\quad
f_i(u_j)=\delta_{ij}=\begin{cases}
1 & \text{if $i=j$},\\
0 & \text{otherwise}.
\end{cases}
\]
Since the map
\[
U\times V\to V,\quad (u,v)\mapsto f_i(u)v,
\]
is bilinear, there exists
a linear map
$\alpha_i\colon U\otimes V\to V$ such that $\alpha_i(u\otimes
v)=f_i(u)v$. Thus
\[
v_i=\sum_{j=1}^n\alpha_i(u_j\otimes v_j)=\alpha_i\left(\sum_{j=1}^nu_j\otimes v_j\right)=0.\qedhere
\]
\end{proof}
\begin{exercise}
\label{xca:uxv=0}
Prove that $u\otimes v=0$ and $v\ne 0$ imply $u=0$.
\end{exercise}
\begin{theorem}
Let $U$ and $V$ be vector spaces.
If $\{u_i:i\in I\}$ is a basis of $U$ and $\{v_j:j\in J\}$ is a basis of $V$, then
$\{u_i\otimes v_j:i\in I,j\in J\}$ is a basis of $U\otimes
V$.
\end{theorem}
\begin{proof}
The $u_i\otimes v_j$ are generators of $U\otimes V$, as
$u=\sum_i\lambda_iu_i$ and $v=\sum_j\mu_jv_j$ imply
\[
u\otimes v=\sum_{i,j}\lambda_i\mu_ju_i\otimes v_j.
\]
We now prove that the $u_i\otimes v_j$ are linearly independent. We need to show that
each finite subset of the $u_i\otimes v_j$
is linearly independent. If $\sum_k\sum_l\lambda_{kl}u_{i_k}\otimes
v_{j_l}=0$, then
\[
0=\sum_{k}u_{i_k}\otimes\left(\sum_{l}\lambda_{kl}v_{j_l}\right).\]
Since
the $u_{i_k}$ are linearly independent, Proposition~\ref{pro:U_LI}
implies that $\sum_{l}\lambda_{kl}v_{j_l}=0$. Thus $\lambda_{kl}=0$ for all
$k,l$, as the $v_{j_l}$ are linearly independent.
\end{proof}
If $U$ and $V$ are finite-dimensional vector spaces, then
\[
\dim(U\otimes V)=(\dim U)(\dim V).
\]
\begin{corollary}
If $\{u_i:i\in I\}$ is a basis of $U$, then every element of $U\otimes V$
can be written uniquely as a finite sum $\sum_{i}u_i\otimes v_i$.
\end{corollary}
\begin{proof}
Every element of the tensor product $U\otimes V$ is a finite sum
of the form $\sum_i x_i\otimes y_i$, where $x_i\in U$ and $y_i\in V$. If
$x_i=\sum_j\lambda_{ij}u_j$, then
\[
\sum_i x_i\otimes y_i=\sum_i\left(\sum_j\lambda_{ij}u_j\right)\otimes y_i
=\sum_j u_j\otimes\left(\sum_i\lambda_{ij}y_i\right).\qedhere
\]
\end{proof}
%\begin{corollary}
% Todo elemento no nulo de $U\otimes V$ puede escribirse como una suma finita
% $\sum_{i=1}^N u_i\otimes v_i$ para un conjuntos $\{u_i:1\leq i\leq
% N\}\subseteq U$ y $\{v_i:1\leq i\leq N\}\subseteq V$ linealmente
% independientes.
%\end{corollary}
%
%\begin{proof}
% tomar $N$ minimal
%\end{proof}
\begin{exercise}
\label{xca:tensor_algebras}
Let $A$ and $B$ be algebras. Prove that $A\otimes B$
is an algebra with
\[
(a\otimes b)(x\otimes y)=ax\otimes by.
\]
\end{exercise}
% \begin{proof}
% Para $x\in A$, $y\in B$ consideramos $R_x\otimes R_y\in\End_K(A\otimes B)$.
% Como la función $A\times B\to\End_K(A\otimes B)$, $(x,y)\mapsto R_x\otimes
% R_y$, es bilineal, existe una función lineal $\varphi\colon A\otimes
% B\to\End_K(A\otimes B)$, $\varphi(x\otimes y)=R_x\otimes R_y$. Para $u,v\in A\otimes B$ definimos
% \[
% uv=\varphi(v)(u).
% \]
% Esta operación es bilineal pues por ejemplo
% \[
% u(v+w)=\varphi(v+w)(u)=(\varphi(v)+\varphi(w))(u)=\varphi(v)(u)+\varphi(w)(u)=uv+uw.
% \]
% Además
% $(a\otimes b)(x\otimes y)=\varphi(x\otimes y)(a\otimes b)=(R_x\otimes R_y)(a\otimes b)=ax\otimes by$.
% Un cálculo sencillo muestra que este producto es asociativo.
% \end{proof}
\begin{exercise}
Let $K$ be a field and $A,B,C$ be $K$-algebras.
Prove the following statements:
\begin{enumerate}
\item $A\otimes B\simeq B\otimes A$.
\item $(A\otimes B)\otimes C\simeq A\otimes(B\otimes C)$.
\item $A\otimes K\simeq A\simeq K\otimes A$.
\item If $A\simeq A_1$ and $B\simeq B_1$, then $A\otimes B\simeq A_1\otimes B_1$.
\end{enumerate}
\end{exercise}
Some examples:
\begin{proposition}
If $G$ and $H$ are groups, then $K[G]\otimes K[H]\simeq K[G\times H]$.
\end{proposition}
\begin{proof}
The set $\{g\otimes h:g\in G,h\in H\}$ is a basis of $K[G]\otimes K[H]$ and
the elements of $G\times H$ form a basis of $K[G\times H]$. There exists a linear isomorphism
\[
K[G]\otimes K[H]\to K[G\times H],
\quad
g\otimes h\mapsto (g,h),
\]
that is multiplicative. Thus $K[G]\otimes K[H]\simeq K[G\times H]$
as algebras.
\end{proof}
\begin{proposition}
\label{pro:AKX=AX}
If $A$ is an algebra, then $A\otimes K[X]\simeq A[X]$.
\end{proposition}
\begin{proof}
Each element of the tensor product $A\otimes K[X]$ can be written uniquely as a finite sum of
the form $\sum a_i\otimes X^i$. Routine calculations show that
$A\otimes K[X]\mapsto A[X]$, $\sum a_i\otimes X^i\mapsto \sum a_iX^i$, is a
linear algebra isomorphism.
\end{proof}
\begin{exercise}
\label{xca:AM=MA}
Prove that if $A$ is an algebra, then $A\otimes M_n(K)\simeq M_n(A)$. In
particular, $M_n(K)\otimes M_m(K)\simeq M_{nm}(K)$.
\end{exercise}
Proposition \ref{pro:AKX=AX} and Exercise \ref{xca:AM=MA}
are examples of a procedure known as \emph{scalar extensions}.
\begin{theorem}
\label{thm:extensions_scalars}
Let $A$ be an algebra over $K$ and $E$ be an extension of $K$ (this just simply means that
$K$ is a subfield of $E$). Then
$A^E=E\otimes_KA$ is an algebra over $E$ with respect to
the scalar multiplication
\[
\lambda(\mu\otimes a)=(\lambda\mu)\otimes a,
\]
for all $\lambda,\mu\in E$ and $a\in A$.
\end{theorem}
\begin{proof}
Let $\lambda\in E$. Since $E\times A\to E\otimes_KA$,
$(\mu,a)\mapsto (\lambda\mu)\otimes a$, is $K$-bilinear, there exists
a linear map $E\otimes_KA\to E\otimes_KA$, $\mu\otimes a\mapsto
(\lambda\mu)\otimes a$. The scalar multiplication is then well-defined and
\[
\lambda(u+v)=\lambda u+\lambda v
\]
for all $\lambda\in E$ and $u,v\in E\otimes_KA$. Moreover,
\[
(\lambda+\mu)u=\lambda u+\mu u,
\quad
(\lambda\mu)u=\lambda(\mu u),
\quad
\lambda(uv)=(\lambda u)v=u(\lambda v)
\]
for all $u,v\in E\otimes_KA$ and $\lambda,\mu\in E$.
\end{proof}
\begin{exercise}
Prove the following statements:
\begin{enumerate}
\item $\{1\}\otimes A$ is a subalgebra of $A^E$ isomorphic to $A$.
\item If $\{a_i:i\in I\}$ is a basis of $A$, then $\{1\otimes a_i:i\in
I\}$ is a basis of $A^E$.
\end{enumerate}
\end{exercise}
\begin{exercise}
Prove that if $G$ is a group and $K$ is a subfield of $E$, then
\[
E\otimes_K K[G]\simeq E[G].
\]
\end{exercise}
\subsection{Formanek's theorem, II}
The combination of technique known as extensions of scalars we have seen in the previous section
and Formanek's theorem for rational group algebras
yield the following general result.
\begin{theorem}[Formanek]
\index{Formanek's theorem}
Let $K$ be a field of characteristic zero and let $G$ be a group.
If every element of $K[G]$ is invertible or a zero divisor,
then $G$ is locally finite.
\end{theorem}
\begin{proof}
Since $K$ is of characteristic zero, $\Q\subseteq K$. Then $K[G]\simeq
K\otimes_{\Q}\Q[G]$. Note that each $\beta\in K\otimes_{\Q}\Q[Q]$ can be written
uniquely as
\[
\beta=1\otimes\beta_0+\sum k_i\otimes\beta_i,
\]
where $\{1,k_1,k_2,\dots,\}$ is a basis of $K$ as a $\Q$-vector space.
Let $\alpha\in\Q[G]\subseteq K[G]$. By assumption, every element of $K[G]$ is
invertible of a zero divisor. Assume first that $\alpha$ is invertible.
Let $\beta\in K[G]\simeq K\otimes_{\Q}\Q[Q]$ be such that $\alpha\beta=1$. Since
\[
1\otimes 1=(1\otimes\alpha)\beta=1\otimes \alpha\beta_0+\sum k_i\otimes \alpha\beta_i,
\]
it follows that $\alpha\beta_0=1$. Thus $\alpha$ is invertible in $\Q[G]$. Similarly, if
$\alpha$ is a zero divisor, then
$\alpha\beta=0$ and $\alpha\beta_j=0$ for all $j$. Thus $\alpha$ is a zero divisor in $\Q[G]$.
Hence
each $\alpha\in\Q[G]$ is invertible or a zero divisor, so Formanek's theorems
for $\Q$ applies.
\end{proof}
% \section*{Rickart's theorem}
% En esta sección vamos a demostrar que para cualquier grupo $G$ el radical de
% Jacobson de $\C[G]$ es cero. Demostraremos también que el radical de Jacobson
% de $\R[G]$ es cero.
% \begin{definition}
% \index{Anillo!con involución}
% \index{Involución!de un anillo}
% Sea $R$ un anillo. Una \emph{involución} del anillo $R$ es un morfismo
% aditivo $R\to R$, $x\mapsto x^*$, tal que $x^{**}=x$ y $(xy)^*=y^*x^*$ para
% todo $x,y\in R$.
% \end{definition}
% De la definición se deduce inmediatamente que si $R$ es unitario, entonces
% $1^*=1$.
% \begin{example}
% La conjugación $z\mapsto\overline{z}$ es una involución de $\C$.
% \end{example}
% \begin{example}
% La trasposición $X\mapsto X^T$ es una involución del
% anillo $M_n(K)$.
% \end{example}
% \begin{example}
% Sea $G$ un grupo. Entonces
% $\left(\sum_{g\in G}\alpha_gg\right)^*=\sum_{g\in G}\overline{\alpha_g}g^{-1}$
% es una involución de $\C[G]$.
% \end{example}
% Dado un grupo $G$, se define la \emph{traza} de un elemento
% $\alpha=\sum_{g\in G}\alpha_gg\in K[G]$ como $\trace(\alpha)=\alpha_1$. Es
% fácil ver que $\trace\colon K[G]\to K$, $\alpha\mapsto\trace(\alpha)$ es una
% función $K$-lineal tal que $\trace(\alpha\beta)=\trace(\beta\alpha)$.
% \begin{exercise}
% Sea $G$ un grupo finito y $K$ un cuerpo tal que su característica no divide al orden de $G$.
% Demuestre las siguientes afirmaciones:
% \begin{enumerate}
% \item Si $\alpha\in K[G]$ es nilpotente, entonces $\trace(\alpha)=0$.
% \item Si $\alpha\in K[G]$ es idempotente, entonces $\trace(\alpha)=\dim
% K[G]\alpha/|G|$.
% \end{enumerate}
% \end{exercise}
% \begin{exercise}
% Demuestre que
% $\langle\alpha,\beta\rangle=\trace(\alpha\beta^*)$, $\alpha,\beta\in\C[G]$,
% define un producto interno en $\C[G]$.
% \end{exercise}
% \begin{lemma}
% \label{lem:algebraico}
% Sea $G$ un grupo. Si $J(\C[G])\ne 0$, entonces existe $\alpha\in J(\C[G])$ tal que
% $\trace(\alpha^{2^m})\in\R_{\geq1}$
% para todo $m\geq1$.
% \end{lemma}
% \begin{proof}
% Sea $\alpha=\sum_{g\in G}\alpha_gg\in\C[G]$. Entonces
% \[
% \trace(\alpha^*\alpha)
% =\sum_{g\in G}\overline{\alpha_g}\alpha_g
% =\sum_{g\in G}|\alpha_g|^2\geq|\alpha_1|^2
% =|\trace(\alpha)|^2.
% \]
% Al usar esta fórmula para algún $\alpha$ tal que $\alpha^*=\alpha$ y usar
% inducción se obtiene que $\trace(\alpha^{2^m})\geq|\trace(\alpha)|^{2^m}$
% para todo $m\geq1$.
% Sea $\beta=\sum_{g\in G}\beta_gg\in J(\C[G])$ tal que $\beta\ne0$. Como
% $\trace(\beta^*\beta)=\sum_{g\in G}|\beta_g|^2\ne0$ y $J(\C[G])$ es un ideal,
% \[
% \alpha=\frac{\beta^*\beta}{\trace(\beta^*\beta)}\in J(\C[G]).
% \]
% Este elemento $\alpha$ cumple que $\alpha^*=\alpha$ y $\trace(\alpha)=1$.
% Luego $\trace(\alpha^{2^m})\geq 1$ para todo $m\geq1$.
% \end{proof}
% El ejercicio~\ref{exa:norma} implica que $\C[G]$ con
% $\dist(\alpha,\beta)=|\alpha-\beta|$ es un espacio métrico. En este espacio
% métrico, la función $\C[G]\to\C$, $\alpha\mapsto \trace(\alpha)$, es una
% función continua.
% \begin{lemma}
% \label{lem:phi_diferenciable}
% Sea $\alpha\in J(\C[G])$. La función
% \[
% \varphi\colon\C\to\C[G],\quad
% \varphi(z)=(1-z\alpha)^{-1},
% \]
% es continua, diferenciable y $\varphi(z)=\sum_{n\geq0}\alpha^nz^n\in\C[G]$ si $|z|$
% es suficientemente pequeño.
% \end{lemma}
% \begin{proof}
% Sean $y,z\in\C$. Como $\varphi(y)$ y $\varphi(z)$ conmutan,
% \begin{equation}
% \label{eq:Rickart}
% \begin{aligned}
% \varphi(y)-\varphi(z)&=\left( (1-z\alpha)-(1-y\alpha)\right)(1-y\alpha)^{-1}(1-z\alpha)^{-1}\\
% &=(y-z)\alpha\varphi(y)\varphi(z).
% \end{aligned}
% \end{equation}
% Entonces $|\varphi(y)|\leq|\varphi(z)|+|y-z||\alpha\varphi(y)||\varphi(z)|$ y luego
% \[
% |\varphi(y)|\left( 1-|y-z||\alpha\varphi(z)|\right)\leq|\varphi(z)|.
% \]
% Fijado $z$ podemos elegir $y$ suficientemente cerca de $z$ de forma tal que
% se cumpla que $1-|y-z||\alpha\varphi(z)|\geq1/2$. Luego
% $|\varphi(y)|\leq2|\varphi(z)|$. De la igualdad~\eqref{eq:Rickart} se
% obtiene entonces $|\varphi(y)-\varphi(z)|\leq2|y-z||\alpha||\varphi(z)|^2$
% y luego $\varphi$ es una función continua. Por la
% expresión~\eqref{eq:Rickart},
% \[
% \varphi'(z)
% =\lim_{y\to z}\frac{\varphi(y)-\varphi(z)}{y-z}
% =\lim_{y\to z}\alpha\varphi(y)\varphi(z)
% =\alpha\varphi(z)^2
% \]
% para todo $z\in\C$.
% Si $z$ es tal que $|z||\alpha|=|z\alpha|<1$, entonces
% \[
% \varphi(z)-\sum_{n=0}^Nz^n\alpha^n
% =\varphi(z)\left(1-(1-z\alpha)\sum_{n=0}^Nz^n\alpha^n\right)
% =\varphi(z)(z\alpha)^{N+1}
% \]
% y luego
% \[
% \left|\varphi(z)-\sum_{n=0}^Nz^n\alpha^n\right|\leq|\varphi(z)||z\alpha|^{N+1}.
% \]
% Como $\varphi(z)$ está acotada cerca de $z=0$, se concluye que
% $\left|\varphi(z)-\sum_{n=0}^Nz^n\alpha^n\right|\to0$ si $N\to\infty$.
% \end{proof}
% Estamos en condiciones de demostrar el teorema de Rickart:
% \begin{theorem}[Rickart]
% \index{Teorema!de Rickart}
% Si $G$ es un grupo, entonces $J(\C[G])=0$.
% \end{theorem}
% \begin{proof}
% Sea $\alpha\in J(\C[G])$ y sea $\varphi(z)=(1-\alpha z)^{-1}$. Sea
% $f\colon\C\to \C$ dada por
% $f(z)=\trace\varphi(z)=\trace\left((1-z\alpha)^{-1}\right)$. Por el lema~\ref{lem:phi_diferenciable},
% $f(z)$ es una función entera tal que $f'(z)=\trace(\alpha\varphi(z)^2)$ y
% \begin{equation}
% \label{eq:Taylor}
% f(z)=\sum_{n=0}^\infty z^n\trace(\alpha^n)
% \end{equation}
% si $|z|$ es suficientemente pequeño. En particular, la
% igualdad~\eqref{eq:Taylor} es la expansión en serie de Taylor para $f(z)$
% en el origen. Esto implica que esta serie tiene radio de convergencia
% infinito y converge a $f(z)$ para todo $z\in\C$. En particular,
% \begin{equation}
% \label{eq:limite}
% \lim_{n\to\infty}\trace(\alpha^n)=0.
% \end{equation}
% Por otro lado, si $\alpha\ne0$ el lema~\ref{lem:algebraico} implica que
% $\trace(\alpha^{2^m})\geq1$ para todo $m\geq0$, lo que contradice el límite
% calculado en~\eqref{eq:limite}. Luego $\alpha=0$.
% \end{proof}
% Para demostrar un corolario necesitamos dos lemas:
% \begin{lemma}[Nakayama]
% \label{lem:Nakayama}
% \index{Lema!de Nakayama}
% Sea $R$ un anillo unitario y sea $M$ un $R$-módulo finitamente generado. Si
% $J(R)M=M$, entonces $M=0$.
% \end{lemma}
% \begin{proof}
% Supongamos que $M$ está generado por los elementos $x_1,\dots,x_n$. Como $x_n\in M=J(R)M$,
% existen $r_1,\dots,r_n\in J(R)$ tales que $x_n=r_1x_1+\cdots+r_nx_n$, es decir
% $(1-r_n)x_n=\sum_{j=1}^{n-1}r_jx_j$.
% Como $1-r_n$ es inversible, existe $s\in R$ tal que $s(1-r_n)=1$. Luego
% $x_n=\sum_{j=1}^{n-1}sr_jx_j$
% y entonces $M$ está generado por $x_1,\dots,x_{n-1}$. Al repetir este
% procedimiento una cierta cantidad finita de veces, se obtiene que $M=0$.
% \end{proof}
% \begin{lemma}
% \label{lem:Rickart}
% Sea $\iota\colon R\to S$ un morfismo de anillos unitarios. Si
% \[
% S=\iota(R)x_1+\cdots+\iota(R)x_n,
% \]
% donde cada $x_j$ cumple que $x_jy=yx_j$ para todo $y\in\iota(R)$, entonces
% $\iota(J(R))\subseteq J(S)$.
% \end{lemma}
% \begin{proof}
% Veamos que $J=\iota(J(R))$ actúa trivialmente en cada $S$-módulo simple $M$.
% Si $M$ es un $S$-módulo simple, escribimos $M=Sm$ para algún $m\ne0$. Es
% claro que $M$ es un $R$-módulo con $r\cdot m=\iota(r)m$. Como
% \[
% M=Sm=(\iota(R)x_1+\cdots+\iota(R)x_n)m=\iota(R)(x_1m)+\cdots+\iota(R)(x_nm),
% \]
% $M$ es finitamente generado como $\iota(R)$-módulo. Además $J(R)\cdot
% M=JM=\iota(J)M$ es un $S$-submódulo de $M$ pues
% \[
% x_j(JM)=(x_jJ)M=(Jx_j)M=J(x_jM)\subseteq JM.
% \]
% Como $M\ne0$, el lema de Nakayama implica que $J(R)\cdot M\subsetneq M$. Luego,
% como $M$ es un $S$-módulo simple, se concluye que $J(R)M=0$.
% \end{proof}
% \begin{corollary}
% Si $G$ es un grupo, entonces $J(\R[G])=0$.
% \end{corollary}
% \begin{proof}
% Sea $\iota\colon \R[G]\to\C[G]$ la inclusión canónica. Como
% \[
% \C[G]=\R[G]+i\R[G],
% \]
% el lema~\ref{lem:Rickart} y el teorema de Rickart implican que
% $\iota(J(\R[G]))\subseteq J(\C[G])=0$. Luego $J(\R[G])=0$ pues $\iota$ es
% inyectiva.
% \end{proof}