-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
173 lines (147 loc) · 5.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import glob
from argparse import ArgumentParser
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from numpy import pi
from pyDOE import *
# latin hypercube sampling-maximize the minimum distance between points, but place the point in a randomized location within its interval
def lhc_samples_maximin(n, dim, ranges, seeds):
np.random.seed(seeds)
samples = lhs(dim, samples=n, criterion="maximin")
for i in range(dim):
samples[:, i] = (
samples[:, i] * (ranges[(2 * i + 1)] - ranges[2 * i]) + ranges[2 * i]
)
return samples
# latin hypercube sampling-minimize the maximum correlation coefficient
def lhc_samples_corr(n, dim, ranges):
samples = lhs(dim, samples=n, criterion="corr")
for i in range(dim):
samples[:, i] = (
samples[:, i] * (ranges[(2 * i + 1)] - ranges[2 * i]) + ranges[2 * i]
)
return samples
# monte carlo sampling
def random_sampling(dim, n, ranges, seeds):
np.random.seed(seeds)
samples = np.random.rand(n, dim)
for i in range(dim):
samples[:, i] = (
samples[:, i] * (ranges[(2 * i + 1)] - ranges[2 * i]) + ranges[2 * i]
)
return samples
def get_bo_data(n=50, search_glob="bo_L*"):
flag = 0
for file in glob.glob(search_glob):
placeholder = pd.read_csv(file, delimiter="\t", dtype=float)
placeholder["min"] = placeholder.Y.expanding(1).min()
placeholder = placeholder.head(n)
_place_ = placeholder["min"]
_place_ = np.array(_place_)
min_y = _place_.min()
if placeholder["min"].shape[0] <= n:
shorten = n - placeholder["min"].shape[0]
_place_ = np.pad(_place_, (0, shorten), "constant", constant_values=min_y)
if flag == 0:
data_bo = _place_.reshape(1, -1)
flag = 1
else:
data_bo = np.concatenate((data_bo, _place_.reshape(1, -1)), axis=0)
return data_bo
def get_pymoo_data(n=50, search_glob="pymoo_G*"):
flag = 0
for file in glob.glob(search_glob):
placeholder = pd.read_csv(file, delimiter=",", names=list("abntY"), header=None)
placeholder["min"] = placeholder.Y.expanding(1).min()
placeholder = placeholder.head(n)
_place_ = placeholder["min"]
_place_ = np.array(_place_)
minY = _place_.min()
if placeholder["min"].shape[0] <= n:
shorten = n - placeholder["min"].shape[0]
_place_ = np.pad(_place_, (0, shorten), "constant", constant_values=minY)
if flag == 0:
data_pymoo = _place_.reshape(1, -1)
flag = 1
else:
data_pymoo = np.concatenate((data_pymoo, _place_.reshape(1, -1)), axis=0)
return data_pymoo
def read_models_data():
number = 50
data_loc = Path(__file__).parent / "data"
bo_lcb = get_bo_data(n=number, search_glob=f"{data_loc}/bo_L*")
bo_ei = get_bo_data(n=number, search_glob=f"{data_loc}/bo_E*")
data_ga = get_pymoo_data(n=number, search_glob=f"{data_loc}/pymoo_G*")
data_nm = get_pymoo_data(n=number, search_glob=f"{data_loc}/pymoo_N*")
data_lhc = get_pymoo_data(n=number, search_glob=f"{data_loc}/doe_lhc*")
data_vmc = get_pymoo_data(n=number, search_glob=f"{data_loc}/doe_vmc*")
data_labels = [
(bo_ei, "$BO_{EI}$", "r"),
(bo_lcb, "$BO_{LCB}$", "g"),
(data_ga, "GA", "b"),
(data_nm, "NM", "y"),
(data_lhc, "LHC", "cyan"),
(data_vmc, "VMC", "magenta"),
]
return data_labels
def save_opt_evolution(filename):
data_labels = read_models_data()
fig, ax = plt.subplot_mosaic(
[
["G", "G", "G"],
["G", "G", "G"],
["A", "B", "C"],
["D", "E", "F"],
],
sharex=True,
sharey=True,
)
all_axes = fig.get_axes()[1:]
avg_plotting_axes = fig.get_axes()[0]
for j, (data, label, color) in enumerate(data_labels):
drag = np.average(data, axis=0)
x = [x for x in range(0, 50)]
all_axes[j].plot(
x,
drag,
color=color,
label=label,
linewidth=1.0,
)
avg_plotting_axes.plot(
x,
drag,
color=color,
linewidth=1.0,
)
min_drag = np.min(data, axis=0)
max_drag = np.max(data, axis=0)
all_axes[j].fill_between(x, max_drag, min_drag, alpha=0.3, color=color)
all_axes[j].grid(linestyle=":")
avg_plotting_axes.grid(linestyle=":")
twin_ax = avg_plotting_axes.twiny()
twin_ax.set_xlim([0, 50])
twin_ax.set_ylim([4, 10]) # Shared Works for all
avg_plotting_axes.set_xlim([0, 50]) # Shared Works for all
fig.text(0.05, 0.5, "Drag Force ($F_d$)", va="center", rotation=90)
fig.text(0.5, 0.03, "Number of evaluated designs", ha="center")
fig.subplots_adjust(wspace=0.1, hspace=0.2)
fig.legend(loc="upper center", bbox_to_anchor=(0.5, 1.0), ncol=6, fontsize=7)
plt.savefig(filename)
def run(args=None):
parser = ArgumentParser(description="utils")
parser.add_argument(
"command",
choices=["save-opt-evolution"],
)
parser.add_argument("--filename", default="./optimizers.pdf", type=str)
arguments = parser.parse_args(args)
if arguments.command == "save-opt-evolution":
save_opt_evolution(filename=arguments.filename)
else:
parser.print_help()
if __name__ == "__main__":
run()