-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
69 lines (46 loc) · 1.66 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import numpy as np
import mediapipe as mp
from keras.models import load_model
model = load_model("model.h5")
label = np.load("labels.npy")
holistic = mp.solutions.holistic
hands = mp.solutions.hands
holis = holistic.Holistic()
drawing = mp.solutions.drawing_utils
cap = cv2.VideoCapture(0)
while True:
lst = []
_, frm = cap.read()
frm = cv2.flip(frm, 1)
res = holis.process(cv2.cvtColor(frm, cv2.COLOR_BGR2RGB))
if res.face_landmarks:
for i in res.face_landmarks.landmark:
lst.append(i.x - res.face_landmarks.landmark[1].x)
lst.append(i.y - res.face_landmarks.landmark[1].y)
if res.left_hand_landmarks:
for i in res.left_hand_landmarks.landmark:
lst.append(i.x - res.left_hand_landmarks.landmark[8].x)
lst.append(i.y - res.left_hand_landmarks.landmark[8].y)
else:
for i in range(42):
lst.append(0.0)
if res.right_hand_landmarks:
for i in res.right_hand_landmarks.landmark:
lst.append(i.x - res.right_hand_landmarks.landmark[8].x)
lst.append(i.y - res.right_hand_landmarks.landmark[8].y)
else:
for i in range(42):
lst.append(0.0)
lst = np.array(lst).reshape(1,-1)
pred = label[np.argmax(model.predict(lst))]
print(pred)
cv2.putText(frm, pred, (50,50),cv2.FONT_ITALIC, 1, (255,0,0),2)
drawing.draw_landmarks(frm, res.face_landmarks, holistic.FACEMESH_CONTOURS)
drawing.draw_landmarks(frm, res.left_hand_landmarks, hands.HAND_CONNECTIONS)
drawing.draw_landmarks(frm, res.right_hand_landmarks, hands.HAND_CONNECTIONS)
cv2.imshow("window", frm)
if cv2.waitKey(1) == 27:
cv2.destroyAllWindows()
cap.release()
break