-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_aae.py
executable file
·216 lines (182 loc) · 9.17 KB
/
train_aae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse
from torch import optim
from feng.args import *
from feng.data import *
from feng.trainer import *
from feng.aae import *
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input", "-i", type=str,
default="./data/",
help="Path to the folder with input files")
parser.add_argument("--pseudo", "-p", type=str,
default="./data/pseudoseqs_freq.csv",
help="Path to the file with pseudo sequences")
parser.add_argument("--output", "-o", type=str,
default="./",
help="Path to the output folder")
parser.add_argument("--embedding", "--embeddings", "--emb", type=str,
default="./aa_models/w2v_9mers_3wind_20dim_norm.pkl",
help="Path to amino acid embeddings")
parser.add_argument("--comment", type=str,
default="",
help="Additional comment")
# parser.add_argument("--pep_len", "--len", type=str,
# default="8-11",
# help="Min and max peptide length in format '<min>-<max>' (default: '8-11')")
parser.add_argument("--abelin", action="store_true",
help="Abelin testing if passed")
# parser.add_argument("--pep_blocks", "--pep", type=int,
# default=2,
# help="Number of blocks for peptide branch")
# parser.add_argument("--mhc_blocks", "--mhc", type=int,
# default=2,
# help="Number of blocks for MHC branch")
parser.add_argument("--batch_size", "-b", type=int,
default=64,
help="size batch")
parser.add_argument("--epochs", "-e", type=int,
default=10,
help="Number of epochs")
parser.add_argument("--learning_rate", "--lr", type=float,
default=0.002,
help="Learning rate")
parser.add_argument("--sampling", "-s", type=str,
default="bal",
help="'brute', 'bal' or 'wei'")
parser.add_argument("--nn_mode", "--nn", type=str,
default="cnn",
help="'cnn' or 'rnn'")
parser.add_argument("--num_workers", "--nw", type=int,
default=0,
help="Number of workers for DataLoader")
parser.add_argument("--synth", action="store_true",
help="If specified than generate random peptides for batches")
parser.add_argument("--chaos", action="store_true",
help="How many epochs for chaotic pretraining")
parser.add_argument("--linear_dim", "--ld", type=str,
default="64-64",
help="Dimensions and number of Dense layers in a form <#neurons>-<#neurons>-... (default: '64-64'). ")
parser.add_argument("--latent_dim", type=int,
default=32,
help="Latent dimension")
parser.add_argument("--drop_lin", "--dl", type=float,
default=.2,
help="Dropout for linear layers")
parser.add_argument("--labels", action="store_true",
help="Pass labels to AAE decoder. Not compatible with '--semi'")
parser.add_argument("--semi", action="store_true",
help="Semi-supervised. Not compatible with '--labels'")
parser.add_argument("--wass", action="store_true",
help="Train using Wasserstein metrics")
parser.add_argument("--gp", action="store_true",
help="Train using gradient penalty")
args = parser.parse_args()
aae_mode = ""
assert (not args.labels) or (not args.semi)
if args.gp:
assert args.wass
if args.labels:
aae_mode = "labels"
elif args.semi:
aae_mode = "semi"
# make_io_args(parser)
# make_train_args(parser)
# make_resnet_args(parser)
# make_rnn_args(parser)
# make_dense_args(parser)
# io_args = process_io_args(args)
# load data, etc.
# train_args = process_train_args(args)
# make trainer, optimizer, etc
# nn_args = process_nn_args(args)
# start train, test, etc.
device = torch.device("cuda:0" if USE_CUDA else "cpu")
MIN_LEN = 8
MAX_LEN = 11
# INPUT_TRAIN = "/aae_train.csv.gz"
INPUT_NOLABEL = ""
# INPUT_TEST = "/aae_test.csv.gz"
INPUT_TRAIN = "/aae_train_high.csv.gz"
INPUT_NOLABEL = "/aae_train_low.csv.gz"
INPUT_TEST = "/aae_test_v2.csv.gz"
pseudo_sequences = load_pseudo(args.pseudo, args.embedding)
print()
train_dataset = load_iedb("cnn", args.input + INPUT_TRAIN, args.embedding, pseudo_sequences, min_len=MIN_LEN, max_len=MAX_LEN, pad_char="X")
nolabel_dataset = INPUT_NOLABEL
if nolabel_dataset:
nolabel_dataset = load_iedb("cnn", args.input + INPUT_NOLABEL, args.embedding, pseudo_sequences, min_len=MIN_LEN, max_len=MAX_LEN, pad_char="X")
synth_dataset = None
if args.synth:
synth_dataset = MhcSynthDataset(args.embedding, len(train_dataset), pseudo_sequences, min(train_dataset.len), max(train_dataset.len), args.nn_mode)
test_dataset = None
abelin_dataset = None
print()
if args.abelin:
abelin_dataset = load_abelin("cnn", args.input + "/abelin.csv.gz", args.embedding, pseudo_sequences, min_len=MIN_LEN, max_len=MAX_LEN, pad_char="X")
print()
test_dataset = load_iedb("cnn", args.input + INPUT_TEST, args.embedding, pseudo_sequences, min_len=MIN_LEN, max_len=MAX_LEN, pad_char="X")
print()
nn_args = {
"mhc_len": train_dataset.mhc_max_len(),
"pep_len": train_dataset.pep_max_len(),
# "mhc_blocks": args.mhc_blocks,
# "pep_blocks": args.pep_blocks,
"aa_channels": train_dataset.aa_channels(),
# "kernel": 3,
# "hidden": args.hidden_dim,
# "layers": args.layers,
"dense": list(map(int, args.linear_dim.split("-"))),
# "drop_inp": args.drop_inp,
"drop_lin": args.drop_lin,
# "drop_nn": args.drop_nn,
"nn_mode": args.nn_mode
}
if nn_args["nn_mode"] == "aae":
model = make_aae(args.latent_dim, nn_args["pep_len"], nn_args["aa_channels"], nn_args["dense"], nn_args["drop_lin"], aae_mode, device, grad_p=args.gp)
else:
print("Wrong NN architecture:", nn_args["nn_mode"])
0/0
print(model.Q)
print(model.P)
print(model.D)
if model.D_cat:
print(model.D_cat)
# make_optim = lambda params, lr: optim.Adam(params, lr=lr)
make_optim = lambda params, lr: optim.RMSprop(params, lr=lr, centered=True)
make_optimizers = lambda lr: {"encoder": make_optim(model.Q.parameters(), lr),
"decoder": make_optim(model.P.parameters(), lr),
"discriminator": make_optim(model.D.parameters(), lr=lr/2),
"generator": make_optim(model.Q.parameters(), lr=lr/2),
"classifier": make_optim(model.Q.parameters(), lr=lr) if model.D_cat else None,
"discriminator_cat": make_optim(model.D_cat.parameters(), lr=lr/2) if model.D_cat else None,
"generator_cat": make_optim(model.Q.parameters(), lr=lr/2) if model.D_cat else None
}
# previos lr=0.001
lr=args.learning_rate
optimizers = make_optimizers(lr)
pred_mode = "reg"
trainer = AAETrainer(nn_args["nn_mode"], model, train_dataset, synth_dataset, pred_mode, nolabel_dataset=nolabel_dataset, wasserstein=args.wass, device=device, use_gp=args.gp)
trainer.train(args.epochs, None, optimizers, args.batch_size, sampling=args.sampling,
num_workers=args.num_workers, test_dataset=test_dataset, aae_mode=aae_mode)
lr /= 10
optimizers = make_optimizers(lr)
trainer.train(args.epochs, None, optimizers, args.batch_size, sampling=args.sampling,
num_workers=args.num_workers, test_dataset=test_dataset, start_epoch=args.epochs+1, aae_mode=aae_mode)
out_filename = "_".join([args.sampling,
args.embedding[args.embedding.rfind("/")+1 : -4],
"synth" if args.synth else "nosyn",
"e" + str(args.epochs),
"b" + str(args.batch_size),
"lat" + str(args.latent_dim),
"lin"+args.linear_dim])
out_filename += "_aae"
if args.comment:
out_filename += "_" + args.comment
if abelin_dataset:
ppv_scores = evaluate_abelin(trainer, abelin_dataset, num_workers=0, comment=out_filename)
with open(out_filename + ".txt", "w") as outf:
outf.write(json.dumps(trainer.info, sort_keys=True, indent=4, separators=(',', ': ')))
# for model_type, sub_model in [("P", model.P), ("Q", model.Q)]:
# with open("model_" + model_type + "_" + out_filename + ".pt", "wb") as outf:
# torch.save(sub_model.state_dict(), outf)